Details

Title

Investigation of The Effect of Mechanical Vibration Applied During Solidification on The Microstructure and Properties of Aluminum 356 Alloy

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 1

Affiliation

Özgü, Taha Süreyya : Kırıkkale University, Turkey ; Çalın, Recep : Kırıkkale University, Turkey ; Tanış, Naci Arda : Kırıkkale University, Turkey

Authors

Keywords

Casting ; A356 ; Aluminum ; vibration

Divisions of PAS

Nauki Techniczne

Coverage

26-31

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Mondolfo, L.F. (1979). Aluminium Alloys Structures and Properties. London: Butterworths, 806.
[2] Kocatepe, K. & Burdett, C.F. (2000) Effect of low frequency vibration on macro and micro structures of LM6 alloys. Journal of Materials Science, 35(13), 3327-3335. https://doi.org/10.1023/A:1004891809731.
[3] Schaffer, P.L. & Dahle, A.K. (2005). Settling behaviour of different grain refiners in aluminium. Materials Science and Engineering. A, 413, 373-378. https://doi.org/10.1016/j.msea.2005.08.202.
[4] Kumar, P.S., Abhilash, E., Joseph, M.A. (2010). Solidification under mechanical vibration: variation in metallurgical structure of gravity die cast A356 aluminium alloy. In International Conference on Frontiers in Mechanical Engineering (FIME), 20-22 May 2010 (pp. 140-146). India.
[5] Taghavi, F., Saghafian, H. & Kharrazi, Y.H. (2009). Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Materials & Design. 30(5), 1604-1611. https://doi.org/10.1016/j.matdes.2008.07.032.
[6] Hernandez, F.R. & Sokolowski, J.H. (2006). Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al–Si hypereutectic alloys. Journal of Alloys and Compounds. 426(1-2), 205-212. https://doi.org/10.1016/j.jallcom.2006.09.039.
[7] Jian, X., Meek, T.T. & Han, Q. (2006). Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scripta Materialia. 54(5), 893-896. https://doi.org/10.1016/j.scriptamat.2005.11.004.
[8] Chirita, G., Stefanescu, I., Soares, D. & Silva, F.S. (2009). Influence of vibration on the solidification behaviour and tensile properties of an Al–18 wt% Si alloy. Materials & Design. 30(5), 1575-1580. https://doi.org/10.1016/ j.matdes.2008.07.045.
[9] Promakhov, V.V., Khmeleva, M.G., Zhukov, I.A., Platov, V.V., Khrustalyov, A.P., & Vorozhtsov, A.B. (2019). Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties. Metals. 9(1), 87. https://doi.org/10.3390/met9010087.
[10] Selivorstov, V., Dotsenko, Y. & Borodianskiy, K. (2017). Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy. Materials. 10(5), 560. https://doi.org/10.3390/ma10050560.
[11] Yüksel, Ç. (2018). Titreşimli katilaştirmanin birincil ve ikincil Al7Si0, 3mg alüminyum alaşimlarinin içyapisina etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 7(2), 986-992.
[12] Sulaiman, S. & Zulkifli, Z.A. (2018). Effect of mould vibration on the mechanical properties of aluminium alloy castings. Advances in Materials and Processing Technologies. 4(2), 335-343. https://doi.org/10.1080/ 2374068X.2017.1421737.
[13] Y. Seetharama Rao, Rajana Vara Prasad, Sri Ram Murthy Paladugu (2019). Experimental investigations of microstructure and mechanical properties of aluminium alloy using vibration mold. Journal of Recent Activities in Production e-ISSN: 2581-9779. 4(2), 25-34.
[14] ASM International Handbook Committee. (1990). ASM Handbook, Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International.
[15] Kocatepe, K. (2007). Effect of low frequency vibration on porosity of LM25 and LM6 alloys. Materials & Design. 28(6), 1767-1775. https://doi.org/10.1016/ j.matdes.2006.05.004.
[16] Naik, S.N., & Walley, S.M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science. 55(7), 2661-2681. https://doi.org/10.1007/s10853-019-04160-w.

Date

14.02.2024

Type

Article accepted

Identifier

DOI: 10.24425/afe.2024.149248
×