Details
Title
Copper Beam Electron Alloying with Ti PowderJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 1Affiliation
Smolarczyk, P.E. : Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland ; Krupiński, M. : Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland ; Pakieła, Wojciech : Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland ; Węglowski, M. : Łukasiewicz Research Network – Upper Silesian Institute of Technology, Bł. Czesława 16-18, 44-100 Gliwice, Poland ; Śliwiński, P. : Łukasiewicz Research Network – Upper Silesian Institute of Technology, Bł. Czesława 16-18, 44-100 Gliwice, PolandAuthors
Keywords
Copper ; Beam electron alloying ; Abrasion resistance ; ConductivityDivisions of PAS
Nauki TechniczneCoverage
88-93Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Węglowski, M.St., Błacha, S. & Phillips, A. (2016). Electron beam welding – Techniques and trends – Review. Vacuum. 130, 72-92. DOI: 10.1016/j.vacuum.2016.05.004.[2] Yunlian, Q., Ju, D., Quan, H. & Liying, Z. (2000). Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Materials Science and Engineering: A. 280(1), 177-181. DOI: 10.1016/S0921-5093(99)00662-0.
[3] Guo, S., Zhou, Q., Kong, J., Peng, Y., Xiang, Y., Luo, T., Wang, K. & Zhu, J. (2016). Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding. Vacuum. 128, 205-212. DOI: 10.1016/j.vacuum.2016.03.034.
[4] Zhan, X., Yu, H., Feng, X., Pan, P. & Liu, Z. (2019). A comparative study on laser beam and electron beam welding of 5A06 aluminum alloy. Materials Research Express. 6(5), 056563. DOI: 10.1088/2053-1591/ab0562.
[5] Zhu, Q. et al., (2020). Research status and progress of welding technologies for molybdenum and molybdenum alloys. Metals. 10(2), 279, 1-16. DOI: 10.3390/met10020279.
[6] Pakieła, W. & Brytan, Z. (2020). Laser surface alloying of aluminum alloys with Cu/Fe metallic powders. Solid State Phenomena. 308, 64-75, DOI: 10.4028/www.scientific.net/SSP.308.64.
[7] Pakieła, W., Tański, T., Brytan, Z., Chladek, G. & Pakieła, K. (2020). The impact of laser surface treatment on the microstructure, wear resistance and hardness of the AlMg5 aluminum alloy. Applied Physics A. 126, 1-10. DOI: 10.1007/s00339-020-3350-x.
[8] Smolarczyk, P., Krupiński, M. & Pakieła, W. (2021). Microstructure and properties of the aluminum alloyed with ZrO powder using fiber laser. Solid State Phenomena. vol. 326, 157-165. DOI: 10.4028/www.scientific.net/ SSP.326.157.
[9] Janicki, D., Górka, J., Kwaśny, W., Pakieła, W. & Matus, K. (2020). Influence of solidification conditions on the microstructure of laser-surface-melted ductile cast iron. Materials. 13(5), 1174, 1-13. DOI: 10.3390/ma13051174.
[10] Krupiński, M., Krupińska, B. & Chulist, R. (2023). Influence of Re on the plastic hardening mechanism of alloyed copper. Materials. 16(16), 5519, 1-13. DOI: 10.3390/ma16165519.
[11] Krupińska, B., Rdzawski, Z., Krupiński, M. & Pakieła, W. (2020). Precipitation Strengthening of Cu–Ni–Si Alloy. Materials. 13(5), 1182, 1-12. DOI: 10.3390/ma13051182.
[12] Caron, R.N. (2001). Copper Alloys: Properties and Applications. In Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. & Veyssière, P. (Eds.), Encyclopedia of Materials: Science and Technology (pp. 1665-1668). Oxford: Elsevier.
[13] Patidar, D. & Rana, R.S. (2018). The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review. Materials Today: Proceedings. 5(9), Part 3, 17753-17762. DOI: 10.1016/j.matpr.2018.06.099.
[14] Kusinski, J., Kac, S., Kopia, A., Radziszewska, A., Rozmus-Górnikowska, M., Major, B., Major, L., Marczak, J. & Lisiecki, A. (2012). Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences: Technical Sciences. 60(4), 711-728. DOI: 10.2478/v10175-012-0083-9.
[15] Valkov, S., Ormanova, M. & Petrov, P.(2020). Electron-beam surface treatment of metals and alloys: techniques and trends. Metals. 10(9), 1219, 1-20. DOI: 10.3390/met10091219.
[16] Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting — a review. International Materials Reviews. 61(5), 361-377. DOI: 10.1080/09506608.2016.1176289.
[17] Krupiński, M., Smolarczyk, P.E. & Bonek, M. (2020). Microstructure and properties of the copper alloyed with Ag and Ti powders using fiber laser. Materials. 13(11), 2430, 1-13. DOI: 10.3390/ma13112430.
[18] Božić, D., Stasic, J., Dimcic, B., Vilotijevic, M. & Rajkovic, V. (2011). Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites. Bulletin of Materials Science. 34, 217-226. DOI: 10.1007/s12034-011-0102-8.
[19] Ran, Q., Liu, J., Wang, X. & Liu, J. (2021). The Effect of Heat Treatment on the Microstructure Evolution and Properties of an Age-Hardened Cu-3Ti-2Mg Alloy. Archives of Metallurgy and Materials. 66(1), 163-170. DOI: 10.24425/amm.2021.134772. https://journals.pan.pl/dlibra/publication/134772/edition/117801