Details

Title

Microstructure and Mechanical Properties of the EN AC-AlSi12CuNiMg Alloy and AlSi Composite Reinforced with SiC Particles

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 2

Authors

Affiliation

Sirata, G.G. : Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland ; Wacławiak, K. : Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland ; Dolata, A.J. : Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland

Keywords

Metal matrix composites (MMCs) ; Mechanical properties ; SiC particle reinforcement ; Microstructure analysis ; Fractography

Divisions of PAS

Nauki Techniczne

Coverage

50-59

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography


[1] Rashnoo, K., Sharifi, M. J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441, 1-13. DOI: 10.1016/j.matchemphys.2020.123441.

[2] Azadi, M., Winter, G., Farrahi, G.H. & Eichlseder, W. (2015). Comparison between isothermal and non-isothermal fatigue behavior in a cast aluminum-silicon-magnesium alloy. Strength of Materials. 47(6), 840-848. DOI: 10.1007/s11223-015-9721-4.

[3] Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum metal matrix composites with SiC, Al 2 O 3 and graphene–review. Archives of Foundry Engineering. 18(2), 5-10. DOI: 10.24425/122493.

[4] Arora, A., Astarita, A., Boccarusso, L. & Mahesh, V.P. (2016). Experimental characterization of metal matrix composite with aluminium matrix and molybdenum powders as reinforcement. Procedia Engineering. 167, 245-251. DOI: 10.1016/j.proeng.2016.11.694.

[5] Farokhpour, M., Parast, M.S.A. & Azadi, M. (2022). Evaluation of hardness and microstructural features in piston aluminum-silicon alloys after different ageing heat treatments. Results in Materials. 16, 100323, 1-11. DOI: 10.2139/ssrn.4162353.

[6] Sirata, G.G., Wacławiak, K. & Dyzia, M. (2022). Mechanical and Microstructural Characterization of aluminium alloy, EN AC-Al Si12CuNiMg. Archives of Foundry Engineering. 22(3), 34-40. DOI: 10.24425/afe.2022.140234.

[7] Kurzawa, A. & Kaczmar, J.W. (2017). Bending strength of EN AC-44200–Al2O3 composites at elevated temperatures. Archives of Foundry Engineering. 17(1), 103-108. DOI: 10.1515/afe-2017-0019.

[8] Lijay, K.J., Selvam, J.D.R., Dinaharan, I. & Vijay, S.J. (2016). Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Transactions of Nonferrous Metals Society of China. 26(7), 1791-1800. DOI: 10.1016/S1003-6326(16)64255-3.

[9] Lakshmipathy, J. & Kulendran, B. (2014). Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. International Journal of Refractory Metals and Hard Materials. 46, 137-144. DOI: 10.1016/j.ijrmhm.2014.06.007.

[10] Jayashree, P.K., Gowrishankar, M.C., Sharma, S., Shetty, R., Hiremath, P. & Shettar, M. (2021). The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints. Journal of Materials Research and Technology. 12, 2325-2339. DOI: 10.1016/j.jmrt.2021.04.015.

[11] Dolata-Grosz, A., Dyzia, M., Śleziona, J. & Wieczorek, J. (2007). Composites applied for pistons. Archives of Foundry Engineering. 7(1), 37-40. ISSN (1897-3310).

[12] Moćko, W. & Kowalewski, Z.L. (2011). Mechanical properties of A359/SiCp metal matrix composites at wide range of strain rates. Applied Mechanics and Materials. 82, 166-171. https://doi.org/10.4028/www.scientific.net/ AMM.82.166.

[13] Dolata, A.J. & Dyzia, M. (2014). Effect of Chemical Composition of the Matrix on AlSi/SiC p+ C p Composite Structure. Archives of Foundry Engineering. 14(1), 135-138. ISSN (1897-3310).

[14] Wysocki, J., Grabian, J. & Przetakiewicz, W. (2007). Continuous drive friction welding of cast AlSi/SiC (p) metal matrix composites. Archives of Foundry Engineering. 7(1), 47-52. ISSN (1897-3310).

[15] Li, R., Pan, Z., Zeng, Q. & Xiaoli, Y. (2022). Influence of the interface of carbon nanotube-reinforced aluminum matrix composites on the mechanical properties–a review. Archives of Foundry Engineering. 22(1), 23-36. DOI: 10.24425/afe.2022.140213.

[16] Dolata, A.J., Mróz, M., Dyzia, M. & Jacek-Burek, M. (2020). Scratch testing of AlSi12/SiCp composite layer with high share of reinforcing phase formed in the centrifugal casting process. Materials. 13(7), 1685, 1-17. DOI: 10.3390/ma13071685.

[17] Pawar, P.B., & Utpat, A.A. (2014). Development of aluminium based silicon carbide particulate metal matrix composite for spur gear. Procedia Materials Science, 6, 1150-1156. DOI:10.1016/j.mspro.2014.07.187.

[18] Miracle, D.B. (2005). Metal matrix composites–from science to technological significance. Composites science and technology, 65(15-16), 2526-2540. DOI: 10.1016/j.compscitech.2005.05.027.

[19] Dyzia, M. (2017). Aluminum matrix composite (AlSi7Mg2Sr0. 03/SiCp) pistons obtained by mechanical mixing method. Materials. 11(1), 42, 1-14. DOI: 10.3390/ma11010042.

[20] Sahoo, B.P.,& Das, D. (2019). Critical review on liquid state processing of aluminium based metal matrix nano-composites. Materials Today: Proceedings. 19, 493-500. DOI: 10.1016/j.matpr.2019.07.642.

[21] Yar, A.A., Montazerian, M., Abdizadeh, H. & Baharvandi, H.R. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of alloys and Compounds. 484(1-2), 400-404. DOI: 10.1016/j.jallcom.2009.04.117.

[22] Kumar, B.A. & Murugan, N. (2012). Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Materials & Design. 40, 52-58. DOI: 10.1016/j.matdes.2012.03.038.

[23] Peng, L.M., Han, K.S., Cao, J.W. & Noda, K. (2003). Fabrication and mechanical properties of high-volume-fraction Si3N4-Al-based composites by squeeze infiltration casting. Journal of Materials Science Letters. 22(4), 279-282. DOI: 1022356413756.

[24] Rajan, T.P.D., Pillai, R.M., & Pai, B.C. (2008). Centrifugal casting of functionally graded aluminium matrix composite components. International Journal of Cast Metals Research. 21(1-4), 214-218. DOI: 10.1179/136404608X361972.

[25] Chen, H.S., Wang, W.X., Li, Y.L., Zhang, P., Nie, H.H. & Wu, Q.C. (2015). The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites. Journal of Alloys and Compounds. 632, 23-29. DOI: 10.1016/j.jallcom.2015.01.048.

[26] Rohatgi, P.K. & Schultz, B. (2007). Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Material Matters. 2(4), 16-20.

[27] Torralba, J.D., Da Costa, C.E. & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology. 133(1-2), 203-206. DOI: 10.1016/S0924-0136(02)00234-0.

[28] Suryanarayana, C. & Al-Aqeeli, N. (2013). Mechanically alloyed nanocomposites. Progress in Materials Science. 58(4), 383-502. DOI: 10.1016/j.pmatsci.2012.10.001.

[29] Taha, M.A. (2001). Practicalization of cast metal matrix composites (MMCCs). Materials & Design. 22(6), 431-441. DOI: 10.1016/S0261-3069(00)00077-7.

[30] Maurya, M., Maurya, N.K. & Bajpai, V. (2019). Effect of SiC reinforced particle parameters in the development of aluminium based metal matrix composite. Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy. 06(03), 200-206. DOI: 10.5109/2349295.

[31] Sharma, P., Sharma, S. & Khanduja, D. (2015). A study on microstructure of aluminium matrix composites. Journal of Asian Ceramic Societies. 3(3), 240-244. DOI: 10.1016/j.jascer.2015.04.001.

[32] Chandra, D., Chauhan, N. R. & Rajesha, S. (2020). Hardness and toughness evaluation of developed Al metal matrix composite using stir casting method. Materials Today: Proceedings. 25, 872-876. DOI: 10.1016/j.matpr.2019.12.026.

[33] Kaviyarasan, K., Kumar, J.P., Anandh, S.K., Sivavishnu, M. & Gokul, S. (2020). Comparison of mechanical properties of Al6063 alloy with ceramic particles. Materials Today: Proceedings. 22, 3067-3074. DOI: 10.1016/j.matpr.2020.03.442.

[34] Subramanya Reddy, P., Kesavan, R. & Vijaya Ramnath, B. (2017). Evaluation of mechanical properties of aluminum alloy (Al2024) reinforced with silicon carbide (SiC) metal matrix Composites. Solid State Phenomena. 263, 184-188. DOI: 10.4028/www.scientific.net/SSP.263.184.

[35] Nair, S.V., Tien, J.K. & Bates, R.C. (1985). SiC-reinforced aluminium metal matrix composites. International Metals Reviews. 30(1), 275-290. https://doi.org/10.1179/ imtr.1985.30.1.275.

[36] Ozben, T., Kilickap, E. & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology. 198(1-3), 220-225. DOI: 10.1016/j.jmatprotec.2007.06.082.

[37] Ozden, S., Ekici, R. & Nair, F. (2007). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing. 38(2), 484-494. DOI: 10.1016/j.compositesa.2006.02.026.

[38] Shuvho, M.B.A., Chowdhury, M.A., Kchaou, M., Roy, B. K., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442. DOI: 10.1016/j.cdc.2020.100442.

[39] Peng, Z. & Fuguo, L. (2010). Effects of particle clustering on the flow behavior of SiC particle reinforced Al metal matrix composites. Rare Metal Materials and Engineering. 39(9), 1525-1531. DOI: 10.1016/S1875-5372(10)60123-3.

[40] Kurzawa, A. & Kaczmar, J.W. (2017). Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles. Archives of Foundry Engineering. 17(3), 73-78. DOI: 10.1515/afe-2017-0094.

[41] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering: A. 788, 139497, 1-16. DOI: 10.1016/j.msea.2020.139497.

[42] Li, Y., Yang, Y., Wu, Y., Wang, L. & Liu, X. (2010). Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Materials Science and Engineering: A. 527(26), 7132-7137. DOI: 10.1016/j.msea.2010.07.073.

[43] Dolata, A.J., Dyzia, M. & Boczkal, S. (2016). Structure of interface between matrix alloy and reinforcement particles in Al/SiCp+ Cgp hybrid composites. Materials Today: Proceedings. 3(2), 235-239. DOI: 10.1016/j.matpr.2016.01.063.

[44] Keshavamurthy, R., Mageri, S., Raj, G., Naveenkumar, B., Kadakol, P.M. & Vasu, K. (2013). Microstructure and mechanical properties of Al7075-TiB2 in-situ composite. Research Journal of Material Sciences. 1(10), 6-10. ISSN 2320- 6055.

[45] Moustafa, S.F. (1995). Wear and wear mechanisms of Al-22% Si/A12O3f composite. Wear. 185(1-2), 189-195. DOI: 10.1016/0043-1648(95)06607-1.

Date

05.06.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.149271
×