Details

Title

The effect of fermentation modes on the efficiency of organic waste treatment in batch bioreactors

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

1

Affiliation

Hovorukha, Vira : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Hovorukha, Vira : Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiologyand Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Authors

Keywords

environmental protection; ; fermentation; ; green energy; ; batch bioreactor; ; multi-component organic waste; ; environmental biotechnologies;

Divisions of PAS

Nauki Techniczne

Spatial coverage

80-86

Publisher

Polish Academy of Sciences

Bibliography

  1. Akhlaghi, N. & Najafpour-Darzi, Gh. (2020). A Comprehensive Review on Biological Hydrogen Production, International Journal of Hydrogen Energy, 45(43), pp. 22492–22512. DOI:10.1016/j.ijhydene.2020.06.182.
  2. Alwaeli, M., Alshawaf, M. & Klasik, M., (2022). Recycling of Selected Fraction of Municipal Solid Waste as Artificial Soil Substrate in Support of the Circular Economy, Archives of Environmental Protection, 48(4), pp. 68–77. DOI:10.24425/aep.2022.143710.
  3. Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H. & Nisbet, E.G. (2021). Quantification of Methane Emissions from UK Biogas Plants, Waste Management, 124, pp. 82–93. DOI:10.1016/j.wasman.2021.01.011.
  4. Berezkin, V.G. (1983). Chemical Methods in Gas Chromatography. Elsevier, The Netherlands 1983.
  5. Bernstad, A.K., Cánovas, A. & Valle, R. (2017). Consideration of Food Wastage along the Supply Chain in Lifecycle Assessments: A Mini-Review Based on the Case of Tomatoes, Waste Management & Research, 35(1), pp. 29–39. DOI:10.1177/0734242X16666945.
  6. Chaijak, P. & Sola, P. (2023). ‘The New Report of Domestic Wastewater Treatment and Bioelectricity Generation Using Dieffenbachia Seguine Constructed Wetland Coupling Microbial Fuel Cell (CW-MFC)’. Archives of Environmental Protection; 2023; 49(1), pp. 57-62. DOI:10.24425/aep.2023.144737.
  7. Chen, T., Zhang, Sh. & Yuan, Z. (2020). Adoption of Solid Organic Waste Composting Products: A Critical Review, Journal of Cleaner Production, 272, 122712. DOI:10.1016/j.jclepro.2020.122712.
  8. El Bari, H., Lahboubi, N., Habchi, S., Rachidi, S., Bayssi O., Nabil N., Mortezaei Y. & Villa, R. (2022). Biohydrogen Production from Fermentation of Organic Waste, Storage and Applications, Cleaner Waste Systems, 3, 100043. DOI:10.1016/j.clwas.2022.100043.
  9. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S.M. & Husin H. (2022). Biomass and Wind Energy as Sources of Renewable Energy for a More Sustainable Environment in Indonesia: A Review, Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690.
  10. Erses, A.S., Onay, T.T. & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills, Bioresource technology, 99(13), pp. 5418–5426. DOI:10.1016/j.biortech.2007.11.008.
  11. Gill, S.S., Jana, A.M. & Shrivastav, A. (2014). Aerobic bacterial degradation of kitchen waste: A review, Journal of microbiology, biotechnology and food sciences, 3(6), pp. 477–483. https://office2.jmbfs.org/index.php/JMBFS/article/view/7661.
  12. Havryliuk, O., Hovorukha, V., Bida, I., Gladka G., Tymoshenko, A., Kyrylov, S., Mariychuk, R. & Tashyrev O. (2023). Anaerobic Degradation of the Invasive Weed Solidago canadensis L. (Goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria, Plants, 12(1), pp. 198–213. DOI:10.3390/plants12010198.
  13. Hovorukha, V., Tashyrev, O., Matvieieva, N., Tashyreva, H., Havryliuk, O., Bielikova O. & Sioma, I. (2019). Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate, Environmental Research, Engineering and Management, 74(4), pp. 31–42. |DOI:10.5755/j01.erem.74.4.20723.
  14. Hovorukha, V., Tashyrev, O., Havryliuk, O. & Iastremska, L. (2020). High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-Industrial Anaerobic Batch Reactor, The Open Agriculture Journal, 14(1), pp. 174–186. DOI:10.2174/1874331502014010174.
  15. Katinas, V., Marčiukaitis, M., Perednis, E. & Dzenajavičienė, E.F. (2019). Analysis of Biodegradable Waste Use for Energy Generation in Lithuania, Renewable and Sustainable Energy Reviews, 101, pp. 559–567. DOI:10.1016/j.rser.2018.11.022.
  16. Khan, M.A., Ngo H.H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S.W., Nguyen, D.D. & Wang, J. (2018). Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy, Renewable Energy, 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability, 129, pp. 754–768. DOI:10.1016/j.renene.2017.04.029.
  17. Lim, J.X., Zhou, Y. & Vadivelu, V.M. (2020). Enhanced Volatile Fatty Acid Production and Microbial Population Analysis in Anaerobic Treatment of High Strength Wastewater, Journal of Water Process Engineering, 33, 101058. DOI:10.1016/j.jwpe.2019.101058.
  18. Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C. & Signorini, A. (2014). Vegetable Waste as Substrate and Source of Suitable Microflora for Bio-Hydrogen Production, Renewable Energy, 68, pp. 6–13. DOI:10.1016/j.renene.2014.01.013.
  19. Mata-Alvarez, J., Macé, S. & Llabrés P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives, Bioresource Technology, 74(1), pp. 3–16. DOI:10.1016/S0960-8524(00)00023-7.
  20. Meegoda, J.N., Li, B., Patel, K. & Wang, L.B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion, International Journal of Environmental Research and Public Health, 15(10), 2224. DOI:10.3390/ijerph15102224.
  21. Parthiba Karthikeyan, O., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C. & Carrere, H. (2018). Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review, Bioresource Technology, 249, pp. 1025–1039. DOI:10.1016/j.biortech.2017.09.105.
  22. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka I. (2022). Preliminary Analysis of the State of Municipal Waste Management Technology in Poland along with the Identification of Waste Treatment Processes in Terms of Odor Emissions, Archives of Environmental Protection, 48(3), pp. 3–20. DOI:10.24425/aep.2022.142685.
  23. Rubežius, M., Venslauskas, K., Navickas, K. & Bleizgys R. (2020). Influence of Aerobic Pretreatment of Poultry Manure on the Biogas Production Process, Processes, 8(9), 1109. DOI:10.3390/pr8091109.
  24. Scarlat, N., Dallemand J.-F. & Fahl F. (2018). Biogas: Developments and Perspectives in Europe, Renewable Energy, 129, pp. 457–472. DOI:10.1016/j.renene.2018.03.006.
  25. Shimizu, S., Fujisawa, A., Mizuno, O., Kameda, T. & Yoshioka, T. (2008). Fermentative Hydrogen Production From Food Waste Without Inocula, AIP Conference Proceedings, 987(1), pp. 171–174. DOI:10.1063/1.2896968.
  26. Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyrev O. (2014). Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration, International Journal Bioautomation, 18(1), pp. 45–52. https://biomed.bas.bg/bioautomation/2014/vol_18.1/files/18.1_05.pdf
  27. Tashyrev, O., Hovorukha, V., Havryliuk, O., Sioma, I., Gladka, G., Kalinichenko, O., Włodarczyk, P., Suszanowicz, D., Zhuk, H. & Ivanov, Y. (2022). Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane, Energies, 15(3), 911. DOI:10.3390/en15030911.
  28. Wang, X. & Zhao Y.-C. (2009). A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process, International Journal of Hydrogen Energy, 34(1), pp. 245–254. DOI:10.1016/j.ijhydene.2008.09.100.
  29. Wu, X., Zhu, J., Dong, C., Miller, C., Li Y., Wang, L. & Yao, W. (2009). Continuous Biohydrogen Production from Liquid Swine Manure Supplemented with Glucose Using an Anaerobic Sequencing Batch Reactor, International Journal of Hydrogen Energy, 4th Dubrovnik Conference, 34(16), pp. 6636–6645. DOI:10.1016/j.ijhydene.2009.06.058.
  30. Xiao, M. & Wu, F. (2014). A Review of Environmental Characteristics and Effects of Low-Molecular Weight Organic Acids in the Surface Ecosystem, Journal of Environmental Sciences, 26(5), pp. 935–954. DOI:10.1016/S1001-0742(13)60570-7.
  31. Xue, S., Song, J., Wang, X., Shang, Z., Sheng, C., Li, C., Zhu, Y. & Liu, J. (2020). A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights, Renewable and Sustainable Energy Reviews, 117, 109474. DOI:10.1016/j.rser.2019.109474.
  32. Zhang, J., Kan, X., Shen, Y., Loh, K.-C., Wang, C.-H., Dai, Y. & Tong, Y.W. (2018). A Hybrid Biological and Thermal Waste-to-Energy System with Heat Energy Recovery and Utilization for Solid Organic Waste Treatment, Energy, 152, pp. 214–222. DOI:10.1016/j.energy.2018.03.143.

Date

08.03.2024

Type

Article

Identifier

DOI: 10.24425/aep.2024.149434

DOI

10.24425/aep.2024.149434

Pages

80-86

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×