Effects of copper and zinc on Microcystic aeruginosa growth and microcystins production

Journal title

Archives of Environmental Protection








Zhou, Benjun : School of Resources and Environmental Engineering, Hefei University of Technology, China ; Xing, Weihao : School of Resources and Environmental Engineering, Hefei University of Technology, China



Cyanobacteria bloom; ; Heavy metals; ; Microcystins; ; Microcystic aeruginosa;

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Admiraal, W., Tubbing, G.M.J. & Breebaart, L. (1995). Effects of phytoplankton on metal partitioning in the Lower River Rhine, Water Research, 29, 3, pp. 941-946. DOI:10.1016/0043-1354(94)00204-K.
  2. Ao, D., Lei, Z., Dzakpasu, M. & Chen, R. (2019). Role of divalent metals Cu2+ and Zn2+ in microcystis aeruginosa proliferation and production of toxic microcystins, Toxicon, 170, pp. 51-59. DOI:10.1016/j.toxicon.2019.09.012.
  3. Bishop, W.M., Willis, B.E. & Horton, C.T. (2015). Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya Wollei Control in Lay Lake, AL, Environmental Management, 55, pp. 983-990. DOI:10.1007/s00267-014-0433-5.
  4. Brookes, J. D. & Carey, C.C. (2011). Resilience to blooms, Science, 334, 6052, pp. 46-47. DOI:10.1126/science.1207349.
  5. Bouron, A., Kiselyov, K. & Oberwinkler, J. (2015). Permeation, regulation and control of expression of TRP channels by trace metal ions, Pflügers Archiv- European Journal of Physiology, 467, pp. 1143-1164. DOI:10.1007/s00424-014-1590-3.
  6. Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E. & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest turkish freshwater lake: Lake Beyşehir, Science of the Total Environment, 621, pp. 802-816. DOI:10.1016/j.scitotenv.2017.11.258.
  7. Cavet, J.S., Borrelly, G.P.M. & Robinson, N.J. (2003). Zn, Cu and Co in Cyanobacteria: selective control of metal availability, FEMS Microbiology Reviews, 27, (2-3), pp. 165-181. DOI:10.1016/S0168-6445(03)00050-0.
  8. Chakraborty, P., Babu, P.V.R., Acharyya, T. & Bandyopadhyay, B. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC, Chemosphere, 80, 5, pp. 548-553. DOI:10.1016/j.chemosphere.2010.04.039.
  9. Chen, Y., Yin, J., Wei, J. & Zhang, X. (2020) FurA-Dependent Microcystin Synthesis under Copper Stress in Microcystis aeruginosa, Microorganisms, 8, 832. DOI:10.3390/microorganisms806083.
  10. Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X. & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments, World Journal of Microbiology and Biotechnology, 32, 51. DOI:10.1007/s11274-015-2003-2.
  11. Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health, Archives of Industrial Hygiene and Toxicology, 64, 2, pp. 119-130, DOI:10.2478/10004-1254-64-2013-2320.
  12. Du, C., Li, G., Xia, R., Li, C., Zhu, Q., Li, X., Li, J., Zhao, C., Tian, Z. & Zhang, L. (2022). New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems, Environmental Pollution, 309, 119781, DOI:10.1016/j.envpol.2022.119781.
  13. Facey, J.A., Apte, S.C. & Mitrovic, S.M. (2019). A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production, Toxins, 11, 11, 643, DOI:10.3390/toxins11110643.
  14. Gangi, D., Plastani, M.S., Laprida, C. Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. & Pinto, P.D.T. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63, pp. 195-209. DOI:10.1007/s10933-020-00110-8.
  15. Han, C., Machala, L., Medrik, I., Prucek, R., Kralchevska, R.P. & Dionysiou, D.D. (2017). Degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination, Environmental Science and Pollution Research, 24, pp. 19435-19443. DOI:10.1007/s11356-017-9566-4.
  16. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms, Nature Reviews Microbiology, 16, pp. 471-483. DOI:10.1038/s41579-018-0040-1
  17. Kormas, K.A.r., Gkelis, S., Vardaka, E. & Moustaka-Gouni, M. (2011). Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow mediterranean lakes, Limnologica, 41, 3, pp. 167-173. DOI:10.1016/j.limno.2010.10.003.
  18. Krishnan, A., Koski, G. & Mou, X. (2020). Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells, Toxicon, 173, pp. 20-26. DOI:10.1016/j.toxicon.2019.11.003.
  19. Martínez-Ruiz, E.B. & Martínez-Jerónimo, F. (2016). How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis Aeruginosa exposed to nickel stress, Ecotoxicology and Environmental Safety, 133, pp. 36-46. DOI:10.1016/j.ecoenv.2016.06.040.
  20. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino D. & McCarthy M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, pp. 86-93. DOI:10.1016/j.hal.2018.11.003.
  21. Oberemm, A., Becker, J., Codd, G.A. & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians, Environmental Toxicology, 14, 1, pp. 77-88. DOI:10.1002/(SICI)1522-7278(199902)14:1%3C77::AID-TOX11%3E3.0.CO;2-F
  22. Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial Ecology, 65, pp. 995-1010. DOI:10.1007/s00248-012-0159-y.
  23. Paerl, H.W, Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. & Gardner, W.S. (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, 45, 5, pp. 1973-1983. DOI:10.1016/j.watres.2010.09.018.
  24. Polyak, Y., Zaytseva, T. & Medvedeva, N. (2013). Response of toxic cyanobacterium microcystis aeruginosa to environmental pollution, Water, Air, & Soil Pollution, 224, 4, 1494. DOI:10.1007/s11270-013-1494-4.
  25. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F. & Peleato, M.L. (2008). Iron availability affects McyD expression and microcystin-LR synthesis in Microcystis Aeruginosa PCC7806: iron starvation triggers microcystin synthesis, Environmental Microbiology, 10,10, pp. 2476-2483. DOI: 10.1111/j.1462-2920.2008.01663.x.
  26. Shen, F., Wang, L., Zhou, Q. & Huang. X., (2018). Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins, Aquatic Toxicology 196, pp. 9-16. DOI:10.1016/j.aquatox.2018.01.007.
  27. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A. & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91 (2), pp. 621-650. DOI:10.1007/s00204-016-1921-6.
  28. Tsai, K. P. (2015). Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 120, pp. 428-435. DOI:10.1016/j.ecoenv.2015.06.024.
  29. Xu, H., McCarthy, M.J., Paerl, H.W., Brookes, J.D., Zhu, G., Hall, N.S., Qin, B., Zhang, Y., Zhu, M., Hampel, J. J., Newell, S.E. & Gardner, W.S. (2021). Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnology and Oceanography, 66, 4, pp. 1492-1509. DOI:10.1002/lno.11700.
  30. Zhou, H., Chen, X., Liu, X., Xuan, Y. & Hu, T. (2019). Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom, Water Environment Research, 91, pp. 21-31. DOI:10.2175/106143017X15131012188303.
  31. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H. & Deng, J. (2013). Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis Aeruginosa, Science of the Total Environment, 463-464, pp. 111-119. DOI:10.1016/j.scitotenv.2013.05.064.
  32. Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R. & Liu, Y. (2018). characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina Platensis, Bioresource Technology, 269, pp. 285-291. DOI:10.1016/j.biortech.2018.08.131.






DOI: 10.24425/aep.2024.150555





Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science