Details

Title

Research into the Structure and Adhesion of WCCoCr Coatings Plasma-Sprayed onto Castings of AlSi Alloy Plates

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 3

Authors

Affiliation

Radoń, M. : Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland ; Opiekun, Z. : Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland ; Kupiec, B. : Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

Keywords

WCCoCr coatings ; Aluminium cast alloy ; Atmospheric plasma spraying

Divisions of PAS

Nauki Techniczne

Coverage

76-80

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography


[1] Sokołowski, P., Łatka, L., Kozerski, S. & Ambroziak, A. (2015). Plasma spraying from slurries as an alternative to conventional powder plasma spraying. Spajanie materiałów konstrukcyjnych. 3(29), 28-31. (in Polish).

[2] Dudek, S., Gancarczyk, T. & Sosnowy, P. (2012). Application of thermal spraying on the example of a turbine engine. Welding Technology Review. 84(9), 9-13. DOI: https://doi.org/10.26628/wtr.v84i9.351. (in Polish).

[3] Bakan, E. & Vaßen, R. (2017). Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. Journal of Thermal Spray Technology. 26, 992-1010. DOI: https://doi.org/10.1007/s11666-017-0597-7.

[4] Heimann, R. (2008). Plasma Spray coating: principles and applications (2nd ed.). German-Weinhem: Willey-VCH.

[5] Mróz, M. & Rąb, P. (2023). Evaluation of the possibility of applying thermal barrier coatings to AlSi7Mg alloy castings. Archives of Foundry Engineering. 23(3), 104-109. DOI: 10.24425/afe.2023.146668.

[6] Pierce, D., Haynes, A., Hughes, J., Graves, R., Maziasz, P., Muraligharan, G., Shyam, A., Wang, B., England, R. & Daniel, C. (2018) High temperature materials for heavy duty diesel engines: historical and future trends. Progress in Materials Science. 103, 109-179. DOI: 10.1016/j.pmatsci.2018.10.004.

[7] Tan, L.G., Li, G.L., Tao, C. & Feng, P.F. (2022). Study on fatigue life prediction of thermal barrier coatings for high-power engine pistons. Engineering Failure Analysis. 138, 106335. DOI: https://doi.org/10.1016/j.engfailanal.2022.106335.

[8] Padture, N.P., Gell, M. & Jordan, E.H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science. 296(5566), 280-284. DOI: 10.1126/science.1068609.

[9] de Goes, W.U., Markocsan, N., Gupta, M., Vassen, R., Matsushita, T. & Illkova, K. (2020). Thermal barrier coatings with novel architectures for diesel engine applications. Surface and Coatings Technology. 396, 125950. DOI: 10.1016/j.surfcoat.2020.125950.

[10] Uczak de Goes, W., Somhorst, J., Markocsan, N., Gupta, M. & Illkova, K. (2019). Suspension plasma-sprayed thermal barrier coatings for light-duty diesel engines. Journal of Thermal Spray Technology. 28, 1674-1687. https://doi.org/10.1007/s11666-019-00923-8.

[11] Opiekun, Z. (2014). Mechanical properties of the thermal barrier coatings made of cobalt alloy MAR-M509. In M. Aliofkhazraei (Eds.). Superalloys (331-335). Iran, Techeran. IntechOpen. DOI: 10.5772/61100.

[12] Reghu, V.R., Shankar, V. & Ramaswamy, P. (2018). Challenges in plasma spraying of 8% Y2O3-ZrO2 thermal barrier coatings on al alloy automotive piston and influence of vibration and thermal fatigue on coating characteristics. Materials Today: Proceedings. 5(11), 23927-23936. DOI: 10.1016/j.matpr.2018.10.185.

[13] Reghu, V.R., Lobo, K., Basha, A., Tilleti, P., Shankar, V. & Ramaswamy, P. (2019). Protection offered by thermal barrier coatings to Al-Si alloys at high temperatures–A microstructural investigation. Materials Today: Proceedings. 19(2), 676-681. DOI: 10.1016/j.matpr.2019.07.752.

[14] Pulsford, J., Venturi, F., Pala, Z., Kamnis, S. & Hussain, T. (2019). Application of HVOF WC-Co-Cr coatings on the internal surface of small cylinders: Effect of internal diameter on the wear resistance. Wear. 432-433, 202965. DOI: 10.1016/j.wear.2019.202965.

[15] Jonda, E., Łatka L., Lont A., Gołombek K., Szala M. (2024). The effect of HVOF spray distance on solid particle erosion resistance of WC-based cermets bonded by Co, Co-Cr and Ni deposited on mg-alloy substrate. Advances in Science and Technology Research Journal. 18(2), 115-128. DOI: https://doi.org/10.12913/22998624/184025.

[16] Akkaş M. (2020). The mechanical and corrosion properties of WCCo–Al coatings formed on AA2024 using the HVOF method. Material Research Express. 7(7), 076515, 1-18. DOI 10.1088/2053-1591/ab9fba.

Date

17.09.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151294
×