Details

Title

Abrasive Wear Resistance of High-Entropy AlCoCuFeNi Alloy in SiC Mixture

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 3

Affiliation

Chrzan, K. : Łukasiewicz Research Network – Krakow Institute of Technology, Centre of Materials and Manufacturing Research, Poland ; Chrzan, K. : AGH University of Krakow, Faculty of Foundry Engineering, Poland ; Kalandyk, B. : AGH University of Krakow, Faculty of Foundry Engineering, Poland ; Grudzień-Rakoczy, M. : Łukasiewicz Research Network – Krakow Institute of Technology, Centre of Materials and Manufacturing Research, Poland ; Rakoczy, Ł. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Cichocki, K. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland

Authors

Keywords

High-entropy alloys ; Microstructure ; Hardness ; Wear resistance ; Miller machine

Divisions of PAS

Nauki Techniczne

Coverage

123-128

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography


[1] Cantor, B., Chang, I.T.H., Knight, P. & Vincent, A.J.B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 375-377, 213-218. https://doi.org/10.1016/j.msea.2003.10.257.

[2] Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T., Tsau, C.-H., Chang, SY. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials. 6. 299 - 303. https://doi.org/10.1002/adem.200300567.

[3] Dastur, Y.N. & Leslie, W.C. (1981). Mechanism of work hardening in Hadfield manganese steel. Metallurgical Transactions A. 12A, 749-759. https://doi.org/10.1007/BF02648339.

[4] Yeh, J.W. (2013). Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM. 65, 1759-1771. https://doi.org/10.1007/s11837-013-0761-6.

[5] Lu, Z.P., Wang, H., Chen, M.W., Baker, I., Yeh, J.W., Liu, C.T., Nieh, T.G. (2015). An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics. 66, 67-76, https://doi.org/10.1016/j.intermet.2015.06.021.

[6] Cichocki, K., Bała, P., Kozieł, T., Cios, G., Schell N. & Muszka, K. (2022). Effect of mo on phase stability and properties in FeMnNiCo high-entropy alloys. Metallurgical and Materials Transactions A. 53, 1749-1760 https://doi.org/10.1007/s11661-022-06629-x.

[7] Zhao, D.Q., Pan, S.P., Zhang, Y., Liaw, P.K. & Qiao, J.W. (2021) Structure prediction in high-entropy alloys with machine learning. Applied Physics Letters. 118(23), 231904. https://doi.org/10.1063/5.0051307.

[8] Yeh, J.W. (2015). Physical Metallurgy of high-entropy alloys. JOM. 67, 2254-2261. https://doi.org/10.1007/s11837-015-1583-5.

[9] Wang, R., Tang, Y., Li, S., Ai, Y., Li, Y., Xiao, B., Zhu, L., Liu, X. & Bai, S. (2020). Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys and Compounds. 825, 154099, 1-8. https://doi.org/10.1016/j.jallcom.2020.154099.

[10] Mehta, A. & Sohn, Y.H. (2021). Effects in transition metal high-entropy alloys: ‘high-entropy’ and ‘sluggish diffusion’ effects. Diffusion Foundations. 29, 75-93. https://doi.org/10.4028/www.scientific.net/DF.29.75.

[11] Cao, B.X., Wang, C., Yang, T., Liu, C.T. (2020) Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia. 187. 250-255. https://doi.org/10.1016/j.scriptamat.2020.06.008.

[12] Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P. & Liaw, P.K. (2010). Refractory high-entropy alloys. Intermetallics. 18(9), 1758-1765. https://doi.org/10.1016/j.intermet.2010.05.014.

[13] Varvenne, C., Luque, A. & Curtin, W.A. (2016) Theory of strengthening in fcc high entropy alloys. Acta Materialia. 118, 164-176. https://doi.org/10.1016/j.actamat.2016.07.040.

[14] Li, Z., Fu, L., Peng, J., Zheng, H., Ji, X., Sun, Y., Ma, S. & Shan, A. (2020). Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening, Materials Characterization, 159, 109989, 1-11. https://doi.org/10.1016/j.matchar.2019.109989.

[15] Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J. & Yeh, J.W. (2011). Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia. 59(16), 6308-6317. https://doi.org/10.1016/j.actamat.2011.06.041.

[16] Grudzień-Rakoczy, M., Rakoczy, Ł., Cygan, R., Chrzan, K., Milkovič, O. & Pirowski, Z. (2022). Influence of Al/Ti ratio and ta concentration on the As-cast microstructure, phase composition, and phase transformation temperatures of lost-wax Ni-based superalloy castings. Materials. 15(9), 3296, 1-26. https://doi.org/10.3390/ma15093296.

[17] Firstov, S.A., Gorban’, V.F., Krapivka, N.A. Karpets, M.V. & Kostenko, A.D. (2017). Wear resistance of high-entropy alloys. Powder Metallurgy and Metal Ceramics. 56, 158-164. https://doi.org/10.1007/s11106-017-9882-8.

[18] Fan, Q., Chen, C., Fan, C., Liu, Z., Cai, X., Lin, S. & Yang, C. (2021). AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding: Microstructure, mechanical and corrosion properties. Intermetallics. 138, 107337, 1-17. https://doi.org/10.1016/j.intermet.2021.107337.

[19] Yan, G., Zheng, M., Ye, Z., Gu, J., Li, C., Wu, C., Wang, B. (2021). In-situ Ti(C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding. Journal of Alloys and Compounds. 886, 161252, 1-8. https://doi.org/10.1016/j.jallcom.2021.161252.


[20] Standard- ISO 6507-1:2023- Metallic materials-Vickers hardness test. [21] Standard- ASTM G75-15(2021)- Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number).

[22] Ren, Y., Wu, H., Liu, B., Liu, Y., Guo, S., Jiao, Z.B. & Baker, I. (2022). A comparative study on microstructure, nanomechanical and corrosion behaviors of AlCoCuFeNi high entropy alloys fabricated by selective laser melting and laser metal deposition. Journal of Materials Science & Technology. 131, 221-230. https://doi.org/10.1016/j.jmst.2022.05.035.

[23] Cichocki, K., Bała, P., Kwiecień, M., Szymula, M., Chrzan, K., Hamilton, C. & Muszka, K. (2024). The influence of Mo addition on static recrystallization and grain growth behaviour in CoNiFeMn system subjected to prior deformation. Archives of Civil and Mechanical Engineering. 24. https://doi.org/10.1007/s43452-024-00888-8.

[24] Xiao, D.H., Zhou, P.F., Wu, W.Q., Diao, H.Y., Gao, M.C., Song, M. & Liwae, P.K. (2017). Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Materials & Design. 116, 438-447. https://doi.org/10.1016/j.matdes.2016.12.036.

Date

10.10.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151301
×