Details

Title

Numerical and Physical Modeling of Steel Flow Behavior in the Two Strand Tundish During Nonconventional Pouring Conditions

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Authors

Affiliation

Cwudziński, A. : Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metallurgy and Metals Technology, Poland ; Bul'ko, B. : Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, Institute of Metallurgy, Slovak Republic ; Demeter, P. : Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, Institute of Metallurgy, Slovak Republic

Keywords

Tundish ; Subflux flow controller ; Ladle shroud ; Physical trials ; Numerical modelling

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Li, Y., Wu, C., Xie, X., Chen, L., Chen, J., Jang, X. & Ma, X. (2022). Numerical simulation and application of tundish cover argon blowing for a two-strand slab continuous casting machine. Metals. 12(11), 1801, 1-12. https://doi.org/10.3390/met12111801.
  2. Liu, J., Zhou, P., Zuo, X., Wu, D. & Wu, D. (2022). Optimization of the liquid steel flow behavior in the tundish through water model experiment, numerical simulation and industrial trial. Metals. 12(9), 1480, 1-13. https://doi.org/10.3390/met12091480.
  3. Wang, K., Tie, Z., Cai, S., Wang, H., Tang, H. & Zhang, J. (2023). Flow control to a t-shaped five-strand tundish for its overall enhanced metallurgical effects with an approachable identical products quality. ISIJ International. 63(8), 1351-1359. https://doi.org/10.2355/isijinternational.ISIJINT-2023-008.
  4. Huang, W., Chang, S., Zou, Z., Song, H., Qu, Y., Shao, L. & Li. B. (2022). Removal of inclusions using swirling flow in a single-strand tundish. ISIJ International. 62(7), 1439-1449. https://doi.org/10.2355/isijinternational.ISIJINT-2021-600.
  5. Yang, B., Deng, A., Li, Y. & Wang, E. (2022). Exploration of the relationship between the electromagnetic field and the hydrodynamic phenomenon in a channel type induction heating tundish using a validated model. ISIJ International. 62(4), 677-688. https://doi.org/10.2355/isijinternational.ISIJINT-2021-018.
  6. Zhang, J., Liu, Q., Yang, S., Chen, Z., Li, J. & Jiang, Z. (2019). Advances in ladle shroud as a functional device in tundish metallurgy: a review. ISIJ International. 59(7), 1167-1177. https://doi.org/10.2355/isijinternational.ISIJINT-2019-044.
  7. Zepeda-Diaz, F.A., Garcia-Hernandez, S., de Barreto, J. & Gutierrez, J. (2019). Mathematical modelling of the effects of transient phenomena on steel cleanness during tundish transfer practices. ISIJ International. 59(1), 51-59. https://doi.org/10.2355/isijinternational.ISIJINT-2018-527.
  8. Ni, P., Jonsson, L.T.I., Ersson M. & Jönsson P.G. (2017). Application of a swirling flow producer in a conventional tundish during continuous casting of steel. ISIJ International. 57(12), 2175-2184. https://doi.org/10.2355/isijinternational.ISIJINT-2017-377.
  9. Cupek, J., Tkadleckova, M., Merder, T., Walek, M., Saternus, M. & Pieprzyca, J. (2023). Computational fluid dynamics (CFD) analysis of medium flow and removal of inclusions in a two-strand tundish. Metalurgija. 62(3-4), 335-338.
  10. Janiszewski, K. (2013). Refining of liquid steel in a tundish using the method of filtration during its casting in the CC machine. Archives of Metallurgy and Materials. 58(2), 513-521. DOI: 10.2478/amm-2013-0029.
  11. Bulkowski, L., Galisz, U., Kania, H., Kudliński, Z., Pieprzyca, J. & Barański, J. (2012). Industrial tests of steel filtering process. Archives of Metallurgy and Materials. 57(1), 363-369. DOI: 10.2478/v10172-012-0035-2.
  12. Wang, X.-Y., Zhao, D.-T., Qiu, S.-T. & Zou, Z.-S. (2017). Effect of tunnel filters on flow characteristics in an eight-strand tundish. ISIJ International. 57(11), 1990-1999. https://doi.org/10.2355/isijinternational.ISIJINT-2017-165.
  13. Blasko, P., Bulko, B., Petrik, P., Demeter, P, Socha, V., Hanakova, L., Palfy, P., Solc, M. & Vasilnakova, A. (2022) The adjustment of the tundish water model of continuous casting. Archives of Metallurgy and Materials. 67(1), 97-104. DOI: https://doi.org/10.24425/amm.2022.137477.
  14. Warzecha, M., Merder, T., Warzecha, P. & Hutny, A.M. (2019). Hydrodynamic conditions of flow in the tundish depending on selected technological parameters for different steel groups. Archives of Metallurgy and Materials. 64(1), 65-70. DOI: 10.24425/amm.2019.126219.
  15. Cwudziński, A. (2011). Numerical simulation of behaviour a non-metallic inclusions in an one-strand slab tundish with steel flow control devices. Archives of Metallurgy and 56(3), 611-618. DOI: 10.2478/v10172-011-0066-0.
  16. Wu, J., Jin, Y., Gan, F., Li, X., Liu, Z., Lin, P., Huang, Z. & Ling, H. (2023). Digital twin design of a turbulence inhibitor in a tundish based on the production cluster mining algorithm. Metals. 13(10), 1651, 1-17. https://doi.org/10.3390/met13101651.
  17. Zhao, S., Zhu., S., Ge, Y., Wang, J., Xu, D., Li, Z. & Chen. C. (2023). Simulation of fluid flow and inclusion removal in five-flow T-type tundishes with porous baffle walls. Metals. 13(2), 215, 1-15. https://doi.org/10.3390/met13020215.
  18. Gupta, V. K., Jha, P. K. & Jain, P. K. (2021). Modeling of wall shear stress induced inclusion transport and removal in multi-strand tundish. ISIJ International. 61(9), 2445-2456. https://doi.org/10.2355/isijinternational.ISIJINT-2020-667.
  19. Sowa, L. (2015). Effect of steel flow control devices on flow and temperature field in the tundish of continuous casting machine. Archives of Metallurgy and Materials. 61(4), 2071-2078. DOI: 10.1515/amm-2015-0216.
  20. Warzecha, P., Hutny, A.M., Warzecha, M., Merder, T. (2016). Optimization of steel flow in the tundish by modifying its working area. Archives of Metallurgy and Materials. 61(4), 2071-2078. DOI: 10.1515/amm-2016-0333.
  21. Cwudziński, A. (2018). Numerical and physical modeling of liquid steel behaviour in one strand tundish with gas permeable barrier. Archives of Metallurgy and Materials. 63(2), 589-596. DOI: 10.24425/118978.
  22. Walek, J., Tkadleckova, M., Velicka, M. Machu, M., Cupek, J., Huczala, T., Cibulka, J., Ruzicka, J. & Michalek, K. (2023). Physical experiments and numerical simulations of the influence of turbulence inhibitors and the position of ladle shroud on the steel flow in an asymmetric five-strand tundish. Metals. 13(11), 1821, 1-18. https://doi.org/10.3390/met13111821.
  23. Yue, Q., Zhang, B. & Wang. X.Z. (2017). Mathematical simulation for effects of flow control devices in two-strand slab tundish. Metalurgija. 56(1-2), 127-130.
  24. He, F., Wang, H. & Zhu. Z. (2019). Numerical investigation of effect of casting speed on flow characteristics of molten steel in multistrand tundish. ISIJ International. 59(7), 1250-1258. https://doi.org/10.2355/isijinternational.ISIJINT-2018-835.
  25. Chattopadhyay, K., Isac. M. & Guthrie R.I.L. (2011). Physical and mathematical modelling to study the effect of ladle shroud mis-alignment on liquid metal quality in a tundish. ISIJ International. 51(5), 759-768. https://doi.org/10.2355/isijinternational.51.759.
  26. Aguilar-Corona, A., Morales, R., D., Diaz-Cruz. M., Palafox-Ramos, J. & Rodriquez-Hernandez, H. (2002). Modelling the effects of off-centered ladle streams on fluid flow of liquid steel in a slab tundish. Steel Research. 73(10), 438-444. https://doi.org/10.1002/srin.200200012.
  27. Cwudziński, A. (2019). Influence of subflux turbulence controller and ladle shroud asymmetric using on hydrodynamic conditions in one strand slab tundish. Metals. 9(1), 68, 1-13. https://doi.org/10.3390/met9010068.
  28. Bulko, B., Priesol, I., Demeter, P, Gasparovic, P., Baricova, D. & Hrubovcakova, M. (2018). Geometric modification of the tundish impact point. Metals. 8(11), 944, 1-11. https://doi.org/10.3390/met8110944.
  29. Cwudziński, A. (2014). Numerical and physical modeling of liquid steel active flow in tundish with subflux turbulence controller and dam. Steel Research International. 85(5), 902-917. https://doi.org/10.1002/srin.201300284.
  30. Chakraborty, S. & Sahai, Y. (1992). Mathematical modelling of transport phenomena in continuous casting tundishes. Part 1 Transient effects during ladle transfer operations. Ironmaking & Steelmaking. 19(6), 479-487.
  31. Morales, R. D., de Barreto, J., Lopez-Ramirez, S., Palafox-Ramos, J. & Zacharias, D. (2000). Melt flow control in a multi-strand tundish using turbulence inhibitor. Metallurgical and Materials Transactions B. 31B, 1505-1515. https://doi.org/10.1007/s11663-000-0035-x.
  32. Solorio-Diaz, G., Morales, R. D., Palafox-Ramos, J., & Ramos-Banderas, A. (2005). Modelling the effects of a swirling flow on the temperature stratification of liquid steel and flotation of inclusions in a tundish. ISIJ International. 45(8), 1129-1137. https://doi.org/10.2355/isijinternational.45.1129.
  33. Joo, S., Han, J. W. & Guthrie, R.I.L. (1993). Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: Part II. Mathematical model for liquid steel in tundishes. Metallurgical and Materials Transactions B. 24B, 767-777. https://doi.org/10.1007/BF02663137.
  34. Merder, T., Jowsa, J. & Bogusławski, A. (2005). The analysis of the conditions of steel flow in the tundish performer by a numerical method. Archives of Metallurgy and Materials. 50(4), 933-953.
  35. Zhang, L. (2005). Fluid flow, heat transfer and inclusion motion in a four-strand billet continuous casting tundish. Steel Research International. 76(11), 784-796. https://doi.org/10.1002/srin.200506097.
  36. Sahai, Y. & Ahuja, R. (1986). Fluid flow and mixing of melt in steelmaking tundishes. Ironmaking & Steelmaking. 13(5), 241-247.
  37. Sahai, Y. & Emi, T. (1996). Melt flow characterization in continuous casting tundishes. ISIJ International. 36(6), 667-672. https://doi.org/10.2355/isijinternational.36.667.

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151319
×