Details
Title
Review of Data-driven Decision Support Systems and Methodologies for the Diagnosis of Casting DefectsJournal title
Archives of Foundry EngineeringYearbook
2024Volume
Accepted articlesAuthors
Affiliation
Burzyńska, A. : University of Warmia and Mazury in Olsztyn, PolandKeywords
Casting defects ; Quality 4.0. ; Digital transformation ; Zero defects manufacturing ; Smart manufacturing systemsDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Masri, N., Sultan, Y., Akkila, A. N., Almasri, A., Ahmed, A., Mahomud, A. Y., Zaqout, I. & Abu-Naser, S.S. (2019). Survey of rule_based systems. International Journal of Academic Information Systems Research (IJAISR). 3(7), 1-22.
- Tsujioka, Y., Akmal, S., Takada, Y., Kawai, H., & Batres, R. (2012) Semantic similarity for case-based reasoning in the context of GMP. Computer Aided Chemical Engineering. 31, 830-834, https://doi.org/10.1016/B978-0-444-59507-2.50158-X.
- Maynard, A.D. (2015). Avigating the fourth industrial revolution. Nature Nanotechnology. 10(12), 1005-1006. https://doi.org/10.1038/nnano.2015.286.
- Ślusarczyk, B. (2018). Industry 4.0: Are we ready? Polish Journal Manageement Studies. 17(1), 232-248. DOI:10.17512/pjms.2018.17.1.19.
- Sarker, I.H. (2022). Al-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science. 3, 158, 157-159. DOI:10.1007/s42979-022-01043-x.
- Grzegorzewski, P. & Kochański, A. (2018). From data to reasoning. In P. Grzegorzewski, A. Kochanski, J. Kacprzyk (Eds.), Soft modeling in industrial manufacturing (pp. 15-25). Springer Cham.
- Maheshwera, U., Paturi R. & Cheruku S. (2021). Application and performance of machine learning techniques in manufacturing sector from the past two decades. A review, Materials Today: Proceedings. 38(5), 2392-2401. https://doi.org/10.1016/j.matpr.2020.07.209.
- Too, F., Qi, A., Liu, A. & Kusiak, A. (2018). Data-driven smart manufacturing. Journal Manufacturing Systems. 48, 157-169. DOI: 10.1016/j.jmsy.2018.01.006.
- Kuo Y. & Kusiak A. (2017) From data to big data in production research: the past and furure trends. International Journal of Production Research. 57(15-16), 4828-4853. DOI: 10.1080/00207543.2018.1443230.
- Koksal, G., Batmaz, I., Testik, M.C. (2011). A review of data mining applications for quality improvement in manufacturing industry (review). Expert Systems with Applications. 38(10), 13448-13467. DOI: 10.1016/j.eswa.2011.04.063
- (2016). Industry 4.0. – is it all about industrial data and analytics. Retrieved June 15, 2024, from https://www.i-scoop.eu/industry-4-0/industrial-data-analytics/
- Peres, R., Jia, X., Lee, J., Sun, K., Colombo, A.W. & Barata, J. (2020). Industrial artificial intelligence in Industry 4.0. – systematic review, challenges and outlook. Smart Manufacturing IEEE Access. 8, 220121-220139. DOI: 10.1109/access.2020.3042874.
- Zavalishina, J., (2016) Manufacturing and Fourth Revolution, Control Engineering, Cybersecurity. Retrieved June 15, 2024, from https://www.controleng.com/articles/manufacturing-and-the-fourth-revolution/
- Perzyk, M., Dybowski, B. & Kozłowski, J. (2019). Introducing advanced data analytics in perspective of industry 4.0. in die casting foundry. Archives of Foundry Engineering. 19(1), 53-57. DOI: 10.24425/afe.2018.125191.
- Perzyk, M., Kozłowski, J. & Wisłocki, M., (2013). Advanced methods of foundry processes control. Archives of Metallurgy and Materials. 58(3), 899-902. DOI: 10.2478/amm-2013-0096
- Tariq, S., Tariq, A., Masud, M. & Rehman, Z. (2021). Minimizing the casting defects in high pressure die casting using taguchi analysis. Scientia Iranica. 29(1), 53-69. DOI:10.24200/sci.2021.56545.4779.
- Chongwatpol, J. (2015). Prognostic analysis of defects in manufacturing. Industrial Management & Data Systems. 115(1), 64-87. DOI: 10.1108/IMDS-05-2014-0158.
- Dargusch, M.S., Dour, G., Schauer, N., Dinnis, C.M. & Savage, G. (2006). The influence of pressure during solidification of high pressure die cast aluminium telecommunications components. Journal of Materials Processing Technology. 180(1-3), 37-43. https://doi.org/10.1016/j.jmatprotec.2006.05.001.
- Okuniewska, A., Perzyk, M.A. & Kozłowski, J. (2021). Methodology for diagnosing the causes of die-casting defects, based on advanced big data modelling. Archives of Foundry Engineering. 21(4), 103-109. DOI: 10.24425/afe.2021.138687.
- Adamane, A.R., Arnberg, L., Fiorese, E., Timelli, G. & Bonollo, F. (2015). Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al-Si alloys: A Review. International Journal of Meterials. 9(1), 43-53. https://doi.org/10.1007/BF03355601.
- Obregon, J. & Jung, J. (2024). Rule based visualization of faulty process conditions in the die-casting manufacturing. Journal of Intelligent Manufacturing. 35(2), 521-537. DOI:10.1007/s10845-022-02057-1.
- Biernacki, R., Myszka, D. (2005). Examination of casting defects. Retrieved June 15, 2024, from https://www.scribd.com/document/501206908/Badanie-Wad-Odlewow-%C4%87w19
- MetalTek International. (2024). The beginners guide to metal casting defects. Retrieved June 8, 2024, from https://www.metaltek.com/blog/the-beginners-guide-to-metal-casting-defects
- (2024). Causes and prevention of porosity defects in castings, steel casting foundry, china dawang steel casting company. Retrieved June 8, 2024, from https://dawangcasting.com/
- ASM Committee on Nondestructive Inspection of Casting. (2024). International classification of casting defects, Solutions Fonderie. Retrieved June 30, 2024, from https://www.solutionsfonderie.com
- Mozammil, S., Karloopia, J. & Jha, P.K. (2018). Investigation of porosity in Al casting. Materials Today: Proceedings. 5(1), 17270-17276. DOI: 10.1016/j.matpr.2018.04.138.
- Gursoy, O., Nordmak, A., Syversten, F., Colak, M., Tur, K. & Dispinar, D. (2021). Role of metal quality and porosity formation in low pressure die casting of A356: experimental obsercations. Archives of Foundry Engineering. 21(1), 5-10. DOI: 10.24425/afe.2021.136071.
- Rapid Direct. (2022). Porosity in die casting: how to prevent them. Retrieved June 23, 2024, from www.rapiddirect.com/blog/porosity-in-die-casting/
- Jackowski, J. (2018). A mechanism of porosity formation in metal composite casts with saturated reinforcement. Retrieved June 23, 2024, from http://composites.ptmk.net/article,a-mechanism-of-porosity-formation-in-metal
- Kaufman, J.G., Rooy, E.L. (2004). Aluminium alloy castings: properties. Processes and Applications. US of America: ASM International.
- Felberbaum, M., Landry-Desy, E., Weber, L. & Rappaz, M. (2011). Effective hydrogen diffusion coefficient for solidifying aluminium alloys. Acta Materialia. 59(6), 2302-2308. https://doi.org/10.1016/j.actamat.2010.12.022.
- Kendrick, R., Muneratti, G., Consoli, S., Voltazza, F. & Barison, S. (2012). The use of metal treatment to control the quality of an aluminium casting produced by the high-pressure die-casting process. Metall Science and Technology. 2(30), 3-11.
- Khrychikov, V., Semenov, O., Meniailo, H., Aftamdiliants, Y. & Gnyloskurenko, S. (2022). The process of vacuum formation in the shrinkage cavity at castings crystallization. Archives of Foundry Engineering. 22(4), 79-84. DOI: 10.24425/afe.143953.
- Chelladurai, C., Mohan, N.S., Hariharashayee, D., Manikandan, S. & Sivaperumal, P. (2021). Analyzing the casting defects in small scale casting industry. Materials Today: Proceedings. 37(2), 386-394. DOI: 10.1016/j.matpr.2020.05.382.
- Papanikolaou, M. & Saxena, P. (2021). Chapter 7 - Sustainable casting processes through simulation-driven optimization. Sustainable Manufacturing. 165-198. DOI: 10.1016/B978-0-12-818115-7.00003-1.
- Goover, M.P. (2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. Wiley.
- Haworth Casting. (2018). The differences between cold shuts and misruns. Retrieved June 23, 2024, from www.haworthcasting.co.uk
- Kacprzyk, J., Zadrożny, S. (2010). Modern data-driven decision support systems: the role of computing with words and computational linguistics. International Journal of General Systems. 39(4), 379-393. DOI:10.1080/03081071003706618.
- Marjanovic O. (2013) Improving Data-Driven Decision Making through Human-Centered Knowledge Sharing, Retrieved June 23, 2024, from
https://aisel.aisnet.org/acis2013/125 - Holsapple, C.W., Whinston, A.B. (1996). Decision support systeems: a knowledge-based approach. Minneapolis: West Publishing.
- Power, D. (2006). What was the first computerized decision support system (DSS)? Retrieved June 23, 2024, from https://dssresources.com/faq/index.php?action=artikel&id=186
- Power, D. (2007). A brief history of decision support systems, DSSResources.com. Retrieved June 23, 2024, from https://dssresources.com/history/dsshistory.html
- Power, D.J., Heavin, C. (2017). Decision support analytics and business intelligence (third Edition). ISBN:1631573918 Business Expert Press.
- Kapadia, R., Stalney, G., Walker, M.G. (2007). Real Word Model-based Fault Management. Retrieved June 23, 2024, from https://gregstanleyandassociates.com/dx07-final-submission.pdf
- Silva Perez R., et al. (2020) Industrial artificial intelligence in industry 4.0. – systematic review, challenges and outlook. IEEE Access. 8, 22021-220139. DOI: 10.1109/access.2020.3042874.
- Codd, E.F., Codd, S.B., Salley, C.T. (1993). Providing OLAP to User-Analysts: An IT Mandate. Arbor Software Corporation. Retrieved June 23, 2024, from http://www.estgv.ipv.pt/paginaspessoais/jloureiro/esi_aid2007_2008/fichas/codd.pdf
- Power, D. (2008). Understanding data-driven decision support systems. Information Systems Management. 25(2), 149-154. https://doi.org/10.1080/10580530801941124.
- Kareska, K. (2024). Kaizen in manufacturing: transforming productivity and quality through continuous improvement. Available at SSRN. DOI: 10.2139/ssrn.4844999.
- Kochanski A., Kozlowski J., Perzyk M. & Sadłowska, H. (2024). Data-driven advisory systems for industrial manufacturing. Application to the aluminium extrusion process. Knowledge Based Systems. 294, 111631, 1-22. DOI:10.1016/j.knosys.2024.111631.
- Delen, D., Sharda, R. (2008). Artificial Neural Networks in Decision Support Systems. In: Handbook on Decision Support Systems 1. International Handbooks Information System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48713-5_26
- Perzyk, M., Kochanski, A. & Kozlowski, J. (2022). Fundaments of recommendation system for the aluminum extrusion process based on data-driven modeling. Computer Methods in Materials Science. 22(4), 173-188. DOI:10.7494/cmms.2022.4.0782.
- Okuniewska, A., Perzyk, M. & Kozlowski, J. (2023). Machine learning methods for diagnosing the causes of die-casting defects. Computer Methods in Materials Science. 23(2), 45-56. DOI: 10.7494/cmms2023.2.0809.
- Wilk-Kołodziejczyk, D., Rojek, G., Regulski, K. (2014). The decision support system in the domain of casting defects diagnosis. Archives of Foundry Engineering. 14(3), 107-110. DOI: 10.2478/afe-2014-0072.
- Zhao, Y., Qian, F., Gao, Y. (2018). Data Driven Die Casting Smart Factory Solution: First International Conference on Intelligent Manufacturing and Internet of Things and 5th International Conference on Computing for Sustainable Energy and Environment, IMIOT and ICSEE 2018, Chongqing, China, September 21-23, 2018, Proceedings, Part I. 10.1007/978-981-13-2396-6_2.
- Kim, J.S., Kim, J., Lee, J.Y. (2020). Die-casting defect prediction and diagnosis system using process condition data. Procedia Manufacturing. 51, 359-364. DOI: 10.1016/j.promfg.2020.10.051.
- Kim, J., Kang, H.S., Lee, J.Y. (2020). Development of intelligence data analytics system for quality enhancement of die-casting process. Journal of Korean Society for Precision Engineering. 37(4), 247-254. http://doi.org/10.7736/JKSPE.019.136.
- Zhang Y., Gao Z., Sun J. & Liu L. (2023) Machine-learning algorithms for process condition data-based inclusion prediction in continuous-casting process: a case study. 23(15), 1-17. https://doi.org/10.3390/s23156719.
- Saravanan, N., Siddabattuni, V.N.S.K., Ramachandran & K.I. (2010). Fault diagnosis of spur bevel gear box using artificial neural network (ANN) and proximal support vector machune (PSVM). Applied Soft Computing. 10(1), 344-360. https://doi.org/10.1016/j.asoc.2009.08.006.
- Chorowski, J., Wang, J. & Zurada, J.M. (2014). Review and performance comparison of SVM and ELM-based classifiers. Neurocomputing. 128, 507-516. https://doi.org/10.1016/j.neucom.2013.08.009.
- Menezes, A.G.C., Araujo, M.M., Almeida, O.M., Barbosa, F.R. & Braga, A.P.S. (2022). Induction to decision trees to diagnose incipient faults in power transformers. IEEE Transactions on Dielectrics and Electrical Insulation. 29(1), 279-286. DOI: 10.1109/TDEL.2022.3148453.
- Kramer, O. (2013). Dimensionality reduction with unsupervised nearest neighbors. Intelligent Systems Reference Library. 51, 13-23.
- Schapire, R.E. (1990). The strengh of weak learnability. Machine Learning. 5, 197-227.
- Jou, Y.T., Silitonga, R.M. & Sukwadi, R. (2023). A study on the construction of die-casting production prediction model by machine learning with Taguchi methods. Journal of the Chinese Institute of Engineers. 46(5), 540-550. https://doi.org/10.1080/02533839.2023.2204880.
- Omar, F., Sohrab, H., Saad, M., Hameed, A., & Bakhsh, F. I. (2022, January). Deep learning binary-classification model for casting products inspection. In 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (pp. 1-6). IEEE.
- Purushothaman, H. (2022). Defect inspection of casting product surface using CNN. International Journal of Research in Engineeing and Science (IJRES). 10(10).
- Papagianni, Z., Vosniakos, G.-Ch. (2022). Surface Defects Detection on Pressure die casting by machine learning exploiting machine vision features. In Design, Simulation, Manufacturing: The Innovation Exchange (pp. 51-61). Cham: Springer International Publishing.
- Pandey, A., Kumar, A. (2022). Casting fault detection by deep convolutional neural networks. In 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), 11-12 November 2022. Bhubaneswar, India.
- Fu, J.-L. Shen, K. (2021). Automated detection of defects with casting dr image based on deep learning. In IEEE Far East NDT New Technology & Application Forum (FENDT), 14-17 December 2021. Kunming, China. DOI: 10.1109/FENDT54151.2021.9749682.
- Duan, L., Yang, K. & Ruan, L. (2021). Research on automatic recognition of casting defects based on deep learning. IEEE Access. 9, 12209-12216. DOI: 10.1109/ACCESS.2020.3048432.
- Maheswari, M., Brintha, N.C. (2024). A survey on detection of various casting defects using deep learning techniques. In 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), January 2024. Bengaluru, India. DOI: 10.1109/IDCIoT59759.2024.10467829.
- Awtoniuk, M., Majerek, D., Myziak, A. & Gajda, C. (2022). Industrial application of deep neural network for aluminum casting defect detection in case of unbalanced dataset. Advances in Science and Technology Research Journal. 16(5), 120-128. DOI: 10.12913/22998624/154963.
- Konovalenko, I., Maruschak, P., Brezinowa, J. & Prentkovskis, O. (2023). Research of U-Net-Based CNN architectures for metal surface defect detection. Machines. 10(5), 327, 1-19. DOI: 10.3390/machines10050327.
- Neven, R. & Goedeme, T.A. (2021). Multi-branch U-Net for steel surface defect type and severity segmentation. Metals. 11(6), 870, 1-19. https://doi.org/10.3390/met11060870.
- Tao, X., Zhang, D., Ma, W., Liu, X. & Xu, D. (2018) Automatic metallic sufrace defect detection and recognition with convolutional neural networks. Applied Sciences. 8(9), 1575, 1-15. https://doi.org/10.3390/app8091575.
- Norrena, J., Louhenkilpi, S., Visuri, V., Alatravas, T. (2024). Coupling of solidification and heat transfer simulations with interpretable machine learning algorithms to predict transverse cracks in continuous casting of steel. Steel Research International. 95(4), 2300529, 1-16. DOI:10.1002/srin.202300529
- Shikun, C. & Kaufmann, T. (2021). Development of data-driven machine learning models for the prediction of casting surface defects. Metals. 12(1), 1-15. DOI: 10.3390/met12010001.
- Shrivastava, S., Banerjee, D., Kumar, M., Rawat, R. (2024). A unified framework for casting defects classificaion: CNN meets random forest. In International Conference on Intelligent Systems for Cybersecurity (ISCS), 3-4 May 2024 (pp. 1-6). IEEE. DOI: 10.1109/ISCS61804.2024.10581352.
- Shrivastava, S., Banerjee, D., Unadhay, D., Dangi, S. (2024). Casting defect forecasting with integrated convolutional neural networks and random forest. In International Conference on Intelligent Systems for Cybersecurity (ISCS), Gurugram, India (pp. 1-6). DOI: 10.1109/iscs61804.2024.10581136.
- Frayman, Y. & Nahavandi, S. (2006). Machine vision system for automatic inspection of surface defects in aluminum die casting. Journal of Advanced Computational Intelligence and Intelligent Informatics. 10(3), 281-286. DOI:10.20965/jaciii.2006.p0281.
- Dougherty, E.R. (1992). An introduction of morphological image processing. Washington: SPIE Press, Bellingham, USA.
- Qung, Z., Hao, J., Yongwei, N. & Wei-Shi, Z. (2023). Pyramid texture filtering. ACM Transactions on Graphics (TOG). 42(4). DOI: 10.1145/3592120.
- T., Kralova. Y. & Hampl. J. (2015). Expert system for analysis of casting defects ESVOD. Archives of Foundry Engineering. 15(1), 17-20. DOI: 10.1515/afe-2015-0004.
- Sika, R., Rogalewicz, M., Popielarski, P. & Szymański, P. (2020). Decision support system in the field of defects assessment in the metal matrix composites castings. 13(16), 3552, 1-27. DOI: 10.3390/MA13163552.
- Liu, D., Du, Y., Chai, W., Lu, C., & Cong, M. (2022). Digital twin and data-driven quality prediction of complex die-casting manufacturing. IEEE Transactions of Industrial Informatics. 18(11), 2881-8128. DOI: 10.1109/TII.2022.3168309.
- Lee, J., Singh, J., Azamfar, M. (2019). Industrial artificial intelligence. Intelligent Maintenance Systems. Retrieved 23 June 2024 from https://www.researchgate.net/publication/335013398_Industrial_Artificial_Intelligence, DOI: 10.48550/arXiv.1908.02150
- Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., & Chen, X. (2021). Digital twins-based smart manufacturing system design in industry 4.0. a review. Journal of Manufacturing Systems. 60, 119-137. DOI: 10.1016/j.jmsy.2021.05.011.
- Grendys, A. (2021). Why factories need the digital tween? Platform of the future manufacturing. Retrieved June 18, 2024, from www.przemyslprzyszlosci.gov.pl.
- Zhang H, Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017) A digital twin-based approach for design and multi-objective optimization of hollow glass production line. IEEE Access. 5, 26901-26911. DOI: 10.1109/ACCESS.2017.2766453.
- Mahmoud, M.A., Grace, J.A. (2019). A generic evaluation framework of smart manufacturing systems. Procedia Computer Science. 161, 1292-1299. https://doi.org/10.1016/j.procs.2019.11.244.