Details

Title

Improving the Attractiveness of Waste Steel Cans for Steel Mills by Removing Tin

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Authors

Affiliation

Gajda, B.J. : Częstochowa University of Technology, Poland ; Reterski, J. : Provincial Inspectorate for Environmental Protection in Katowice, Poland

Keywords

tin ; steel waste ; recovery leaching process

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Chen, J., Su, Z., Zhang, Y., Chen, Y. & Liu, B. (2016). Research on recovering iron oxide from the iron, tin-bearing tailings. In 7th International Symposium on High-Temperature Metallurgical Processing (pp. 395-402). Springer International Publishing. https://doi.org/10.1007/978-3-319-48093-0_49.
  2. Zhang, X., Ma, G., Liu, M. & Li, Z. (2019). Removal of residual element tin in the ferrous metallurgy process: a review. Metals. 9(8), 834, 1-15. https://doi.org/10.3390/met9080834.
  3. Meng, F., Liu, Q., Kim, R., Wang, J., Liu, G. & Ghahreman, A. (2020). Selective recovery of valuable metals from industrial waste litthium-ion batteries Rusing citric acid under reductive conditions: Leaching optimization and kinetic analysis. 191, 105160, 1-11. https://doi.org/10.1016/j.hydromet.2019.105160.
  4. Souada, M, Louage, , Doisy, J., Meunier, L., Benderrag, A., Ouddane, B., Bellayer, S., Nuns, N. & Traisnel, M. (2018). Extraction of indium-tin oxide from end-of-life LCD panels using ultrasound assisted acid leaching. Ultrason.Sonochem. 40, 926-936. http://dx.doi.org/10.1016/j.ultsonch.2017.08.043.
  5. Cao, Y., Li, F., Li, G., Huang, J., Zhu, H. & He, W. (2020). Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis. Waste Manage. 102, 635-644. https://doi.org/10.1016/j.wasman.2019.11.029.
  6. Lopez-Yanez, , Alonso, A., Vendoechea-Pimienta, A. & Ramirez-Munoz, J. (2019). Indium and Tin recovery from waste LCD panels Rusing citrate as a complexing agent. Waste Manage. 96, 181-189. https://doi.org/10.1016/j.wasman.2019.07.030.
  7. Kumari, , Sinha, M.K., Pramanik, S. & Sahu, S.K. (2018). Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Waste Manage. 75, 486-498. https://doi.org/10.1016/j.wasman.2018.01.033.
  8. Yang, Ch., Ren, J., He X., Wu, S., Su, Y., Yang, J., Jin, Z., Qi, H., Tian, C. & Huang, Z. (2019). Improved comprehensive adhesion performance of aggregate – recycled asphalt interface via incorporating steel slag. Journal of Molecular Liquids. 404, 124958, 1-13. https://doi.org/10.1016/j.molliq.2024.124958.
  9. Grimes, S.M., Yasri, N.G. & Chaudhary, A.J. (2017). Recovery of critical metals from dilute leach solutions – Separation of indium from tin and lead. Inorganica Chimica Acta. 461, 161-166. https://doi.org/10.1016/j.ica.2017.02.002.
  10. Ajiboye, E.A., Panda, P.K., Adebayo, A.O., Ajayi, O.O., Tripathy, B.C., Ghosh, M.K., & Basu, S. (2019). Leaching kinetic of Cu, Ni and Zn from waste silica rich intergrated circuits using mild nitric acid. Hydrometallurgy. 188, 161-168. https://doi.org/10.1016/j.hydromet.2019.06.016.
  11. Moosakazemi, F., Ghassa, S. & Mohammadi, M.R.T. (2019). Environmentally friendly hydrometallurgical recovery of tin and lead from waste printed circuit boards: Thermodynamic and kinetics studies. Journal of Cleaner Production. 228, 185-196. https://doi.org/10.1016/j.jclepro.2019.04.024.
  12. Olasunkanmi, O. & Olatunji, O.I. (2020). Kinetic analysis of Cu and Zn dissolution from prined cirkus board physical processing dust under oxidative ammonia leaching. Hydrometallurgy. 193, 105320, 1-7. https://doi.org/10.1016/j.hydromet.2020.105320.
  13. Junwei, H., Zhenyu, O., Wei, L., Fen, J. & Wenqing, Q. (2020). Recovery of antimony and bismuth from tin anode slime after soda roasting–alkaline leaching. Separation and Purification Technology. 242, 116789, 1-8. https://doi.org/https://doi.org/10.1016/j.seppur.2020.116789.
  14. Chen, Ch., Ma, J., Li, Y., Yang, B. & Xu, B. (2023). Recovery of tin from tin-coated copper-clad steel wire scrap using surface sulfuration-vacuum volatilization. Vacuum. 212, 112052, 1-9. https://doi.org/10.1016/j.vacuum.2023.112052.
  15. Smakowski, T.J. (2011). Critical or deficit mineral commodities for EU and Poland economy. Bulletin of the Mineral and Energy Economy Research Institute of the Polish Academy of Science. 81, 59-68.
  16. Grimes, S.M., Yasri, N.G. & Chaudhary, A.J. (2017). Recovery of critical metals from dilute leach solutions – Separation of indium from tin and lead. Inorganica Chimica Acta. 461, 161-166. http://dx.doi.org/10.1016/j.ica.2017.02.002.
  17. Jun, W.S., Yun, P.S. & Lee, E.C. (2004). Leaching behavior of tin from Sn–Fe alloys in sodium hydroxide solutions. Hydrometallurgy. 73(1-2), 71-80. https://doi.org/10.1016/j.hydromet.2003.08.002.
  18. Kékesi, T. , Török, T.I. & Kabelik, G. (2000). Hydrometallurgy. 55(2), 213-222. https://doi.org/10.1016/S0304-386X(99)00091-2.
  19. Trading Economics. (2024). Retrieved October 13, 2024, from https://tradingeconomics.com/commodity/tin.
  20. Gajda, B. R., Jarosław; Siwka, Jerzy. (2016), Investigation into the recovery of tin from scrapped steel cans with a protective coating. In 25th Anniversary International Conference on Metallurgy and Materials, Metal 2016,25-27 May 2018, (pp. 1388-1393). Brno, Czech Republic.
  21. Gajda, B., Reterski, J., Siwka, J. (2018), The influence of impact machining of scrapped steel sheets of cans for acceleration of Tin leaching process. In 27th Anniversary International Conference on Metallurgy and Materials, Metal 2018, 23-25 May 2018, (pp 1539-1544). Brno, Czech Republic.
  22. Feng, Yu, Zhang, ZheYue, Dong, Belko, Victor O.Maksimenko, Sergey A., Deng, Jun, Sun, Yong, Yang, Zhou, Fu, Qiang, Liu, Baixin, Chen, Qingguo, (2024). Recent progress in degradation and recycling of epoxy resin. Journal of Materials Research and Technology. 32, 2891-2912. https://doi.org/10.1016/j.jmrt.2024.08.095.
  23. Gajda B., Reterski J., Siwka J. (2020). Patent no. 238149. Warszawa, Urząd Patentowy Rzeczypospolitej Polskiej.
  24. Gajda B., Reterski J., Siwka J. (2020). Patent no. 238150. Warszawa, Urząd Patentowy Rzeczypospolitej Polskiej.

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151321
×