Details

Title

Model Studies of Metallurgical Processes Based on the Example of Blowing Steel with Argon

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Authors

Affiliation

Merder, T. : Silesian University of Technology, Poland ; Pieprzyca, J. : Silesian University of Technology, Poland ; Wende, R. : Cognor SA, Ferrostal Łabędy Gliwice, Anny Jagiellonki 47, 44-109 Gliwice, Poland ; Witek, J. : Łukasiewicz Research Network—Institute of Ceramics and Building Materials, Toszecka 99, 44-100 Gliwice, Poland ; Saternus, M. : Silesian University of Technology, Poland

Keywords

Ladle furnace ; Cleanliness of steel ; Porous plug - slot-type ; Water models ; Physical modelling

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. World steel association. (2024). Total production of crude steel. Retrieved October 10, 2024, from https://worldsteel.org/data/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND
  2. Javurek, M., Brummayer, M. & Winico, R. (2022). Turbulent flow measurements in continuous steel casting mold water model. Materials Today: Proceedings. 62(5), 2581-2586. DOI: 1016/j.matpr.2022.03.605.
  3. Irvine, T.F., Capobianchi, M. (2000).. New-Newtonian flow. In F.Kreith (Eds.), The CRC Handbook of Thermal Engineering (pp. 114-118). Springer Science & Business Media.
  4. Müller, L. (1983). Application of dimensional analysis in model research (Zastosowanie analizy wymiarowej w badaniach modeli). Warszawa: PWN. (in Polish).
  5. Kožešnik, J. (1983). Theories of similarity and modeling (Teorie podobnosti a modelowáni). Praha: Academia.
  6. Wroński, S. (1979). Examples of calculations in thermodynamics and kinetics of chemical engineering processes (Przykłady obliczeń z termodynamiki i kinetyki procesów inżynierii chemicznej). Warszawa: WNT. (in Polish).
  7. Chen, L., Diao, J., Wang, G., Qiao, Y. & Xie, B. (2019). Experimental study on slag splashing with modified vanadium slag. Ironmaking & Steelmaking. 46(2), 165-168. DOI: /10.1080/03019233.2017.1361666.
  8. Bielnicki, M. & Jowsa J. (2018). Physical modeling of mold slag entrainment in continuous steel casting mold with consideration the impact of mold powder layer. Steel Research International. 89(9), 1800110, 1-9. DOI: 10.1002/srin.201800110.
  9. Morales, R.D., Calderón-Hurtado, F.A., Chattopadhyay, K., Guarneros, S.J. (2020). Physical and mathematical modeling of flow structures of liquid steel in ladle stirring operations. Metallurgical and Materials Transactions B. 51(2), 628-648. DOI: 10.1007/s11663-019-01759-x.
  10. Yang, F., Jin, Y., Zhu, Ch., Dong, X., Lin, P., Cheng, Ch., Li, Y, Sun, Li., Pan, J. & Cai, Q. (2019) Physical simulation of molten steel homogenization and slag entrapment in argon blown ladle. Processes. 7(8), 479, 1-15. DOI: /10.3390/pr7080479.
  11. Su, C.J., Chou, J.M. & Liu, S.H. (2009). Effect of gas bottom blowing condition on mixing molten iron and slag inside ironmaking smelter. Materials Transactions. 50(6), 1502-1509. DOI: 10.2320/matertrans.MRA2008434.
  12. Pieprzyca, J. & Merder, T. (2022). Modified Froude criterion in modeling two-phase flows in a steel ladle. Metalurgija. 61(1), 145-148.
  13. Irons, G., Senguttuvan, A. & Krishnapisharody, K. (2015). Recent advances in the fluid dynamics of ladle metallurgy. ISIJ International. 55(1), 1-6. DOI: 10.2355/isijinternational. 55.1.
  14. Drobniak, S. (2005). Fluid mechanics - introduction (Mechanika płynów - wprowadzenie). Częstochowa: Tempus Office.
  15. Jeżowiecka-Kabsch K., Szewczyk H. (2001). Fluid mechanics (Mechanika płynów). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish).
  16. Levenspiel, O. (1999). Chemical Reaction Engineering. New York: John Wiley & Sons, Inc.
  17. Li, L., Li, M., Shao, L., Li, Q. & Zou, Z. (2020). Physical and mathematical modeling of swirling gas jets impinging on a°liquid bath using a novel nozzles-twisted lance. Steel Research International. 91(7), 1900684, 207-250. DOI: 10.1002/srin.201900684.
  18. Zhang, B., Chen, K., Wang, R., Liu, Ch. & Jiang, M. (2019). Physical modelling of splashing triggered by the gas jet of an oxygen lance in a converter. Metals. 9(4), 409, 1-12. DOI: 10.3390/met9040409.
  19. Cao, L.,  Wang, Y., Liu, Q. & Feng, X. (2018). Physical and mathematical modeling of multiphase flows in a converter. ISIJ International. 58(4), 573-584. DOI: 10.2355/isijinternatio ISIJINT-2017-680.
  20. Zou, Q., Hu. J., Yang, S., Wang, H. & Deng, G. (2023). investigation of the splashing characteristics of lead slag in side-blown bath melting Process. Energies. 16(2), 1007, 1-18. DOI: 10.3390/en16021007.
  21. Sun, M., Zhang, H., Zhang, J. & Wang, B. (2022). Research on mixing behavior in a combined top–bottom–side blown iron bath gasifier. Processes. 10(5), 973, 973. DOI: /10.3390/pr10050973.
  22. Wang, R., Zhang, B., Hu, C., Liu, C. & Jiang, M. (2022). Physical modeling of slag foaming in combined top and bottom blowing converter. 74(1), 151-158. DOI: 10.1007/s11837-021-04984-5.
  23. Zhou, X., Ersson, M., Zhong, L. & Jönsson,G. (2015). Numerical and physical simulations of a combined top-bottom-side blown converter. Steel Research International. 86(11), 1320-1338. DOI:10.1002/srin.201400376.
  24. Longlong, H. & Min, C. (2023) Study on slag splashing behavior in a 120 t converter based on physical and mathematical simulation. Steel Research International. 94(12), 2300227, 1210-1231DOI: 10.1002/srin.202300227.
  25. Sinelnikov, V., Szucki, M., Merder, T., Pieprzyca, J. & Kalisz, D. (2021). Physical and numerical modeling of the slag splashing process. Materials. 14, 2289, 2-19. DOI: 10.3390/ma14092289.
  26. Liu, C.J., Zhu, Y.X. & Jiang, M.F. (2003). Physical modelling of slag splashing in converter. Ironmaking and Steelmaking. 30(1), 36-42. DOI: 10.1179/030192303225009489.
  27. Pieprzyca, J. & Merder, T. (2021) The process of dissolving solid lump carbonaceous fuel (SLCF) in the oxygen converter - physical modeling. 60(3-4), 201-204.
  28. Mandova, H., Leduc, S., Wang, C., Wetterlund, E., Patrizio, P., Gale, W. & Kraxne, F. (2018). Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass and Bioenergy. 115, 231-243. DOI: 10.1016/j.biombioe.2018.04.021.
  29. Conejo, A.N., & Feng, W. (2022). Ladle eye formation due to bottom gas injection: a reassessment of experimental data. Metallurgical and Materials Transactions B. 53(2), 999-1017. DOI: 10.1007/s11663-021-02355-8.
  30. Jardon-Perez, L.E., Amaro-Villeda, A., Cenejo, A.N. & Ramirez-Argaez, M.A. (2018). Optimizing gas stirred ladles by physical modeling and PIV measurements. Materials and Manufacturing Processes. 33(8), 882-890. DOI:°10.1080/10426914.2017.1401722.
  31. Li, L.M., Liu, Z., Li, B., Matsuura, H. & Tsukihashi, F. (2015). Water model and CFD-PBM coupled model of gas-liquid-slag three-phase flow in ladle metallurgy. ISIJ International. 55(7), 1337-1346. DOI: 10.2355/isijinternational.55.1337.
  32. Michalek K., Tkadleckova, M., Socha, L., Gryc, K., Saternus, M., Pieprzyca, J. & Merder, T. (2018). Physical modelling of degassing process by blowing of inert gas. Archives of Metallurgy and Materials. 63(2), 987-992. DOI:°10.24425/122432.
  33. Lv, N., Wu, L.S., Wang, H.C., Dong, Y.C. & Su, C. (2017). Size analysis of slag eye formed by gas blowing in ladle refining. Journal of Iron and Steel Research International. 24, 243-250. DOI: 10.1016/S1006-706X(17)30036-5.
  34. Mazumdar, D., Dhandapani, P. & Sarvanakumar, R. (2017). Modeling and optimization of gas stirred ladle systems. ISIJ International. 57(2), 286-295. DOI: 10.2355/isijinternational.ISIJINT-2015-701.
  35. Krishnapisharody, K. & Irons, G.A. (2006). Modeling of slag eye formation over a metal bath due to gas bubbling. Metallurgical and Materials Transactions B. 37B 763-772.
  36. Wang, G.C., Haichen Zhou, H., Tian, Q., Ai, X., & Zhang, L. (2017). The motion of single bubble and interactions between two bubbles in liquid steel. ISIJ International. 57(5), 805-813. https://doi.org/10.2355/isijinternational.ISIJINT-2016-670.
  37. Merder, T., Pieprzyca, J., Warzecha, M. & Warzecha, P. (2017). Application of high flow rate gas in the process of argon blowing trough steel. Archives of Metallurgy and Materials. 62(2), 905-910. 905-910. DOI: 10.1515/amm-2017-0133.
  38. Peranandhanthan, M. & Mazumdar, D. (2010). Modeling of slag eye area in argon stirred ladles. ISIJ International. 50(11), 1622-1631. DOI: 10.2355/isijinternational.50.1622.
  39. Pieprzyca, J., Merder, T. & Saternus, M. (2014). Physical modelling of the process of mixing liquid metal in a ladle blown by gas. Metalurgija. 53(3), 327-330.
  40. Silva, A.M.B., Peixoto, J.J.M. & Silva, C.A. (2023). Numerical and physical modeling of steel desulfurization on a modified RH degasser. Metallurgical and Materials Transactions B. 54(5), 2651-2669. DOI: 10.1007/s11663-023-02864-8.
  41. Zhang, S., Liu. J., He, Y., Zhou, C., Yuan, B., Zhang, M. & Barati. M. (2023). Study of dispersed micro-bubbles and improved inclusion removal in Huhrstahl–Heraeus (RH) refining with argon injection through down leg. Metallurgical and Materials Transactions B. 54(5), 2347-2359. DOI:°10.1007/s11663-023-02836-y.
  42. Wang, X., Wang, S., Hu, H., Xie, X., Wu, C., Chen, D. & Long, M. (2023). Flow behavior of liquid steel in fewer strands casting of six-strand bloom tundish. 13(4), 706, 1-15. DOI: 10.3390/met13040706.
  43. Tkadlečková, M., Michalek, K., Socha, L., Válek, L., Sviželová, J. (2016). Investigation of technology of continuously cast steel billets using numerical modelling. In:°METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25-27 May 2016 (pp. 60-65). Ostrava, Czech Republic: Tanger Ltd.
  44. He, Z., Cheng, Q., Lu, H., Zhong, Y., Cheng, C., Song, J. & Lei,°Z. (2023). Numerical simulation of flow and argon bubble distribution in a continuous casting slab mold under different argon injection modes. 13(12), 2010, 1-19. DOI:°10.3390/met13122010.
  45. Sheng, D.Y. & Jönsson, P.G. (2021). Effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. 14(8), 1906, 1-20. DOI:°10.3390/ma14081906.
  46. Sviželová, J., Tkadlečková, M., Michalek, K. (2018). Research of the steel ingot casting and solidification using numerical modelling. In METAL 2018: 27th International Conference on Metallurgy and Materials, 23-25 May 2018 (192-198). Ostrava, Czech Republic: Tanger Ltd.
  47. Merder, T., Kozłowski, S. & Pieprzyca, J. (2024). Modelling of hydrodynamic phenomena occurring in refining ladles for high-carbon Fe-Si alloys. Metalurgija. 63(2),177-180.
  48. Merder, T., Warzecha, P., Pieprzyca, J., Warzecha, M., Wende, R. & Hutny, A. (2023). Model investigation of argon injection into liquid steel at ladle furnace station with using of innovative module. Materials. 16(24), 7698, 1-18. DOI:°3390/ma16247698.
  49. Barchuk, Y., Shcherbak, M. (2018). PL Patent No. 229475. Warszawa, Patent Office of the Republic of Poland. (in Polish).

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151322
×