Details

Title

Industrial Recycling of Scrap Copper Cables and Wires: Combining Cold and Hot Treatments for Maximum Recovery and Minimal Emissions

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Authors

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Kumar, H., Kumagai, S., Saito, Y. & Toshiaki Yoshioka, T. (2024). Latest trends and challenges in PVC and copper recovery technologies for End-of-Life thin cables. Waste Management. 174, 400-410. https://doi.org/10.1016/j.wasman.2023.12.012.
  2. Japan SDGs Action Forum. (2022). Summary Report. Retrieved March 25, 2023, from https://sdgs.un.org/sites/default/ files/2022-07/Event%20Report.pdf
  3. Bonnin, M., Azzaro-Pantel, C., Domenech, S. & Villeneuve, J. (2015). Multicriteria optimization of copper scrap management strategy. Resources, Conservation and Recycling. 99, 48-62. http://dx.doi.org/10.1016/j.resconrec.2015.03.013.
  4. Wędrychowicz, M., Kurowiak, J., Skrzekut, T. & Noga, P. (2023). Recycling of electrical cables-current challenges and future prospects. Materials. 16, 6632, 1-20. https://doi.org/10.3390/ma16206632.
  5. Huang, C.Q. (2012). The development: problems and the new trend of copper conductor processing in China cable industry. Electric Wire & Cable. 5, 142-146.
  6. Piyush, K., Gautam, A., Dayal, H., Bora, A., Patro, C., Sahoo, T. (2015). Selection criteria for usage of aluminum wires in automobile wiring harness. In: 2015 IEEE International Transportation Electrification Conference (ITEC), 14-17 June 2015 (pp. 1-5). https://doi.org/10.1109/ITEC-India.2015.7386949.
  7. Trommnau, J., Kühnle, J., Siegert, J., Inderka, R. & Bauernhansl, T.(2019). Overview of the state of the art in the production process of automotive wire harnesses, current research and future trends. Procedia CIRP. 81, 387-392. https://doi.org/10.1016/j.procir.2019.03.067.
  8. Arslan, F., Celik, C. & Arslan, C. (2019). Recycling of waste electrical cables. Material Science & Engineering International Journal. 3(4), 107-111. DOI:10.15406/mseij.2019.03.00099.
  9. Liquan L, Gongqi Liu, Dean Pan, & Wei Wang, (2015). Overview of the recycling technology for copper-containing cables. Resources, Conservation & Recycling. 126, 132-140. DOI:1016/j.resconrec.2017.07.024.
  10. Elshkaki A., Graedel T.E., Ciacci L. & Reck B.K. (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change. 39, 305-315. https://doi.org/10.1016/j.gloenvcha.2016.06.006.
  11. Conesa , Silvia J.A., Egea, S., Moltó, J., Ortuño, & Font, R. (2013). Decomposition of two types of electric wires considering the effect of the metal in the production of pollutants. Chemosphere. 91(2), 118-123. https://doi.org/10.1016/j.chemosphere.2012.11.014.
  12. Suresh, S.S., Mohanty, S. & Nayak, S.K. (2017). Composition analysis and characterization of waste polyvinyl chloride (PVC) recovered from data cables. Waste Management. 60, 100-111. DOI:10.1016/j.wasman.2016.08.033.
  13. Hagstrom, Hampton, R.N., Helmesjo, B. & Hjertberg, T. (2006). Disposal of cables at the "end of life"; some of the environmental considerations. Feature article. 22(2), 21-30. DOI: 10.1109/MEI.2006.1618999.
  14. Zabłocka-Malicka, M., Rutkowski, P. & Szczepaniak, W. (2015). Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Management. 46, 488-496. https://doi.org/10.1016/j.wasman.2015.1008.1001.
  15. Buekens, A. & Kefa Cen, K. (2011). Waste incineration, PVC, and dioxins. The 6th International Conference on Combustion, Incineration/Pyrolysis and Emission Control (6th i-CIPEC). Journal of Material Cycles and Waste Management. 13, 190-197. DOI 10.1007/s10163-011-0018-9.
  16. Faragó, ,Špirová, V., Blažeková , P.,Lalinská-Voleková, B., Macek, J.,Jurkovič, L.Vítková, M. & Hiller, E. (2023). Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil—old burden in Bratislava city, Slovakia. Heliyon. 9(3), e13605, 1-18. https://doi.org/10.1016/j.heliyon.2023.e13605.
  17. Youcai, Z. (2017) . Pollution control and resource recovery:municipal solid wastes incineration. Oxford, UK: Butterworth-Heinemann. https://doi.org/10.1016/C2016-0-02152-6.
  18. Sobotova, L., Badida, M., Dzuro, T. (2019). Analysis of selected technologies of cable Recycling. In 2019 International Council on Technologies of Environmental Protection (ICTEP), 23-25 October 2019 (pp. 234-239). Starý Smokovec, Slovakia. DOI:10.1109/ICTEP48662. 2019.8968967.
  19. Sanritsu Machine Industry Co., Ltd. (2023). Waste Wire & Cable Recycling Machines. Retrieved August 20, 2024, from https://www.sanritsu-machine.com/en/catalog/index.php.
  20. Yang, L. , Zhen, L., Guilan, T., Ying, L. (2011). Recycling electrically conductive metal and insulating material from cable waste by ultrasonic. In Third International Conference on Measuring Technology and Mechatronics Automation ( 973-976). DOI:10.1109/ICMTMA.2011.525.
  21. Sheih, S.W, Tsai, M.S. (2000). Hot water separation process for copper and insulating material recovery from electric cable waste. Waste Management & Research. 18(5), 478-484. DOI:1034/j.1399-3070.2000.00150.x.
  22. Ho-Seok Jeon, Chul-Hyun Park, Bong-Gyoo Cho & Jai-Koo Park, (2009). Separation of PVC and rubber from covering plastics in communication cable scrap by tribo-charging. Separation Science and Technology. 44(1), 190-202. DOI:10.1080/01614940802286040.
  23. Park, C.H., Subasinghe, N. & Jeon, H.S. (2015). Separation of covering plastics from particulate copper in cable wastes by induction electrostatic. Separation Science and Technology. 56(7), 1140-1143. DOI:2320/matertrans.M2015138.
  24. de Araújo, M. C. P. B., Chaves, A. P., Espinosa, D. C. R., & Tenório, J. A. S. (2008). Electronic scraps-recovering of valuable materials from parallel wire cables . Waste Management. 28(11), 2177-2182. https://doi.org/10.1016/j.wasman.2007.09.019.
  25. Feng, Q., Wen, S., Deng, J. & Zhao, W. (2017). Combined DFT and XPS investigation of Enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Applied Surface Science. 425, 8-15. https://doi.org/10.1016/j.apsusc.2017.07.017.
  26. Anastassakis, G.N., Bevilacqua, P. & De Lorenzi, L. (2015). Recovery of residual copper from low- content tailings derived from waste electrical cable treatment . International Journal of Mineral Processing. 143, 105-111. https://doi.org/10.1016/j.minpro.2015.09.011.
  27. Lambert, F, Gaydardzhiev, S. Léonard, G., Lewis, G., Bareel, P-F., David & Bastin, D. (2015). Copper leaching from waste electric cables bybiohydrometallurgy . Minerals Engineering. 76, 38-46. https://doi.org/10.1016/j.mineng.2014.12.029.
  28. Kameda, T., Fukushima, S., Grause, G. & Yoshioka, T. (2013). Metal recovery from wire scrap via a chloride volatilization process: poly(vinyl chloride) derived chlorine as volatilization agent. Thermochimica Acta. 562, 65-69. https://doi.org/10.1016/j.tca.2013.03.012.
  29. Hense, P., Reh, K., Franke, M. & Hornung, A. (2015). Pyrolysis of waste electrical and electronic equipment (weee) for recovering metals and energy: previous achievements and current approaches. Environmental Engineering and Management Journal. 14(7), 1637-1647. DOI:30638/eemj.2015.175.
  30. Chaala, A., Darmstadt, H. & Roy, C. (1997). Vacuum pyrolysis of electric cable wastes. Journal of Analytical and Applied Pyrolysis. 39(1), 79-96. https://doi.org/10.1016/S0165-2370(96)00964-3.
  31. Rong-Hua Ma, Yi-Chang Lin, & Chun-Pao Kuo,(2006). The study of thermal pyrolysis mechanisms for chloro organic compounds in electric cable and medical wastes. Journal of Analytical and Applied Pyrolysis. 75(2), 245-251. https://doi.org/10.1016/j.jaap.2005.06.010.
  32. Kundariya, N., Mohanty, S.S., Varjani, S., Ngo, H.H., Wong, J.W.C., Taherzadeh, M., Chang, J.-S., Ng, H.Y., Kim, S.-H. & Bui, X.-T. (2021). A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology. 342(4), 125982, 1-11. https://doi.org/10.1016/j.biortech.2021.125982.
  33. Mersiowsky, I.(2002). Long-term fate of PVC products and their additives in landfills. Progress in Polymer Science. 27(10), 2227-2277. https://doi.org/10.1016/S0079-6700(02)00037-0.
  34. Rambabu, U., Balaram, V., Ratheesh, R., Chatterjee, S., Babu, M.K. & Munirathnam, N. (2018). Assessment of hazardous substances in electrical cables: Implementation of RoHS regulations in India. Journal of Testing and Evaluation. 33(3), 1930-1941. DOI:10.1520/JTE20160645.
  35. Aupetit, A. (2021). Overview of the global cable industry–markets and materials. the global cable industry. The Global Cable Industry: Materials, Markets, Products. 1-20. DOI:1002/9783527822263.ch1.
  36. Ma, S., Xing, P., Li, H., Wang, C., Hou, X., Cun, Z., Liu, M. & Yan, R. (2023). Recovery of high-grade copper from waste polyester imide enameled wires by pyrolysis and ultrasonic treatment. Resources, Conservation & Recycling. 196, 107034, 1-9. DOI:1016/j.resconrec.2023.107034.
  37. Wajima, T. (2022). Pyrolysis behavior of polyvinyl chloride with sodium hydroxide and application to copper recovery from multiwire tinned copper cables. International Journal of the Society of Materials Engineering for Resources. 25(1), 70-77. DOI:5188/ijsmer.25.70.
  38. Xu, J., Kumagai, S., Kameda, T., Saito,Y., Takahashi, K., Hayashi, H. & Yoshioka, T. (2019) . Separation of copper and polyvinyl chloride from thin waste electric cables: A combined PVC-swelling and centrifugal approach. Waste Management. 89, 27-36. DOI:1016/j.wasman.2019.03.049.
  39. Southard, M. Z., & Ahmed, S. (2019). Perry's Chemical Engineers' Handbook. Mcgraw-Hill Education.
  40. Papanikolaou,G. Jiayang Wu, J., Huber, G.W. & Mavrikakis, M. (2023). Mechanistic insights into the pyrolysis of poly (vinyl chloride). Journal of Polymer Research. 30(2), 83, 1-16. DOI:10.1007/s10965-023-03439-6.
  41. Huggett, C., Levin, B.C. (1987). Toxicity of the Pyrolysis and Combustion Products of Poly (Vinyl Chlorides): A Literature Assessment. Fire and materials. 11, 131-142. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=106993.
  42. Horikoshi, S., Hachisuga, N. & Serpone, N. (2024). Recycling of e-waste power cables using microwave-induced pyrolysis – process characteristics and facile recovery of copper metal. RSC Advances. 14(41), 29955-29964. DOI:10.1039/d4ra05602g.
  43. Cuevas, A.B., Leiva-Candia, D.E. & Dorado, M.P. (2024). An overview of pyrolysis as waste treatment to produce eco-energy. Energies. 17(12), 2852, 1-32. DOI: 3390/en17122852.
  44. Pelzer, Q. (2020).Étude du vieillissement des isolants synthétiques des câble moyenne tension ”HTA”. Université Grenoble Alpes. France. Retrieved August 15, 2024, from https://theses.hal.science/tel 02628506v1/file/PELZER_2019_archivage.pdf.
  45. Shihab, N.R., Enab, T.A., Galal, A. & Ghattas, M.S.(2016). Effect of grain size on orange peel in oxygen free copper wire produced by upcast. International Journal of Scientific and Engineering Research. 7(9), 1271-127. https://www.researchgate.net/publication/310844142.
  46. Mao, Q., Zhang, Y., Guo, Y. & Zhao, Y. (2021). Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Communications materials. 2(1), 1-9. https://doi.org/10.1038/s43246-021-00150-1.
  47. PX Preciment SA. (2024). Retrieved August 20, 2024, from https://pxgroup.com/sites/default/files/Cu-ETP.pdf.

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151323
×