Details
Title
Enhancing photocatalytic performance of kaolin clay: an overview of treatment strategies and applicationsJournal title
Archives of Environmental ProtectionYearbook
2024Volume
50Issue
3Authors
Affiliation
Boonphan, Samor : Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand ; Prachakiew, Suriyong : Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand ; Klinbumrung, Khuruwan : Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand ; Thongrote, Chananbhorn : Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand ; Klinbumrung, Arrak : Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand ; Klinbumrung, Arrak : School of Science, University of Phayao, Phayao, ThailandKeywords
Kaolin clay; ; Photocatalytic; ; Surface modification; ; Water treatment;Divisions of PAS
Nauki TechniczneCoverage
54-64Publisher
Polish Academy of SciencesBibliography
- Abdo, S. M., El-Hout, S. I., Shawky, A., Rashed, M. N. & El-Sheikh, S. M. (2022). Visible-light-driven photodegradation of organic pollutants by simply exfoliated kaolinite nanolayers with enhanced activity and recyclability. Environmental Research, 214, 113960. DOI:10.1016/j.envres.2022.113960
- Abou Alsoaud, M. M., Taher, M. A., Hamed, A. M., Elnouby, M. S. & Omer, A. M. (2022). Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Scientific Reports, 12(1), 12972. DOI:10.1038/s41598-022-17305-w
- Akpotu, S. O., Lawal, I. A., Diagboya, P. N., Mtunzi, F. M. & Ofomaja, A. E. (2022). Engineered geomedia kaolin clay-reduced graphene oxide–polymer composite for the remediation of olaquindox from water. ACS omega, 7(38), pp. 34054-34065. DOI:10.1021/acsomega.2c03253
- Al-Qadri, F. A. & Alsaiari, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the Removal of cupper (II). Archives of Environmental Protection, 49(2). https://DOI 10.24425/aep.2023.145894
- Al-Rudainy, A. J., Mustafa, S., Ashor, A. & Bader, M. (2023). Role of Kaolin on Hemtological, Biochemical and Survival Rate of Cyprinus Carpio Challenged with Pesuydomonas Aeruginosa. Iraqi Journal of Agricultural Sciences, 54(2), pp. 472-477. DOI:10.36103/ijas.v54i2.1723
- Alkhabbas, M., Odeh, F., Alzughoul, K., Afaneh, R. & Alahmad, W. (2023). Jordanian Kaolinite with TiO2 for Improving Solar Light Harvesting Used in Dye Removal. Molecules, 28(3), 989. DOI:10.3390/molecules28030989
- Aritonang, A. B., Selpiana, H., Wibowo, M. A. & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(3), pp. 277-286. DOI:10.20961/jkpk.v7i3.66567
- Asmare, Z. G., Aragaw, B. A., Atlabachew, M. & Wubieneh, T. A. (2022). Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS omega, 8(1), pp. 480-491. DOI:10.1021/acsomega.2c05265
- Ayalew, A. A. (2020). Development of kaolin clay as a cost-effective technology for defluoridation of groundwater. International Journal of Chemical Engineering, 1-10. DOI:10.1155/2020/8820727
- Ayalew, A. A. (2023). Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process. Advances in Materials Science and Engineering, DOI:10.1155/2023/9104807
- Bahniuk, M. S., Alidina, F., Tan, X. & Unsworth, L. D. (2022). The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Frontiers in Bioengineering and Biotechnology, 10, 1048755. DOI:10.3389/fbioe.2022.1048755
- Belachew, N. & Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1), pp. 1-8. DOI:10.1007/s13201-019-1121-7
- Belmokhtar, N., Ammari, M. & Brigui, J. (2017). Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Construction and Building Materials, 146, pp. 621-629. DOI:10.1016/j.conbuildmat.2017.04.127
- Bhatti, Q. A., Baloch, M. K., Schwarz, S. & Ishaq, M. (2023). Impact of mechanochemical treatment on surface chemistry and flocculation of kaolinite dispersion. Asia‐Pacific Journal of Chemical Engineering, 18(3), e2886. DOI:10.1002/apj.2886
- Bondarieva, A., Yaichenia, I., Zahorodniuk, N., Tobilko, V. & Pavlenko, V. (2022). Water purification from cationic organic dyes using kaolin-based ceramic materials. Technology audit and production reserves, 2(3/64), pp. 10-16. https://doi:10.15587/2706-5448.2022.254584.
- Bousbih, S., Errais, E., Darragi, F., Duplay, J., Trabelsi-Ayadi, M., Daramola, M. O. & Ben Amar, R. (2021). Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay. Environmental Technology, 42(21), pp. 3348-3359. DOI:10.1080/09593330.2020.1729242
- Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
- Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z. & Wu, J. (2023). The application of mineral kaolinite for environment decontamination: A review. Catalysts, 13(1), 123. DOI:10.3390/catal13010123
- Chuaicham, C., Trakulmututa, J., Shu, K., Shenoy, S., Srikhaow, A., Zhang, L., Mohan, S., Sekar, K. & Sasaki, K. (2023). Recent clay-based photocatalysts for wastewater treatment. Separations, 10(2), 77. DOI:10.3390/separations10020077
- Ding, S. L., Zhang, L. L., Xu, B. H. & Liu, Q. F. (2012). Review and prospect of surface modification of kaolin. Advanced Materials Research, 430, pp. 1382-1385. DOI:10.4028/www.scientific.net/AMR.430-432.1382
- El-Sheikh, S., Shawky, A., Abdo, S. M., Rashed, M. N. & El-Dosoqy, T. I. (2020). Preparation and characterisation of nanokaolinite photocatalyst for removal of P-nitrophenol under UV irradiation. International Journal of Nanomanufacturing, 16(3), pp. 232-242. DOI:10.1504/IJNM.2020.108042
- El-Sherbiny, S., Morsy, F. A., Hassan, M. S. & Mohamed, H. F. (2015). Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research, 12, pp. 739-749. DOI:10.1007/s11998-015-9672-5
- Erasto, L., Hellar-Kihampa, H., Mgani, Q. A. & Lugwisha, E. H. J. (2023). Comparative analysis of cationic dye adsorption efficiency of thermally and chemically treated Tanzanian kaolin. Environmental Earth Sciences, 82(4), 101. DOI:10.1007/s12665-023-10782-w
- Eze, K., Nwadiogbu, J., Nwankwere, E., Appl, A. & Res, S. (2012). Effect of acid treatments on the physicochemical properties of kaolin clay. Archives of Applied Science Research, 4(2), pp. 792-794.
- Fourdrin, C., Balan, E., Allard, T., Boukari, C. & Calas, G. (2009). Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Physics and Chemistry of Minerals, 36, pp. 291-299. DOI:10.1007/s00269-008-0277-8
- Gad, A., Al-Mur, B. A., Alsiary, W. A. & Abd El Bakey, S. M. (2022). Optimization of carboniferous Egyptian kaolin treatment for pharmaceutical applications. Sustainability, 14(4), 2388. DOI:10.3390/su14042388
- Goodarzi, N., Ashrafi-Peyman, Z., Khani, E. & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102. DOI:10.3390/catal13071102
- Hoai, P. T. T., Huong, N. T. M., Huong, P. T. & Viet, N. M. (2022). Improved the light adsorption and separation of charge carriers to boost photocatalytic conversion of CO2 by using silver doped ZnO photocatalyst. Catalysts, 12(10), 1194. DOI:10.3390/catal12101194
- Hu, P., Zhang, Y. & Cheng, G. (2023). Molecular Catalysis, 547, 113312. DOI:10.1016/j.mcat.2023.113312
- Huang, Z., Li, L., Li, Z., Li, H. & Wu, J. (2020). Synthesis of novel kaolin-supported g-C3N4/CeO2 composites with enhanced photocatalytic removal of ciprofloxacin. Materials, 13(17), 3811. DOI:10.3390/ma13173811
- Jiang, D., Liu, Z., Fu, L., Jing, H. & Yang, H. (2018). Efficient nanoclay-based composite photocatalyst: the role of nanoclay in photogenerated charge separation. The Journal of Physical Chemistry C, 122(45), pp. 25900-25908. DOI:10.1021/acs.jpcc.8b08663
- Kamaluddin, M. R., Zamri, N. I. I., Kusrini, E., Prihandini, W. W., Mahadi, A. H. & Usman, A. (2021). Photocatalytic activity of kaolin–titania composites to degrade methylene blue under UV light irradiation; kinetics, mechanism and thermodynamics. Reaction Kinetics, Mechanisms and Catalysis, 133(1), pp. 517-529. DOI:10.1007/s11144-021-01986-x
- Kareem, R. A., Alqadoori, M. A. I. & Ismail, M. M. (2022). Enhancement mechanical, thermal and dielectrical characteristics of polystyrene reinforcement by glass fiber and additive kaolin. Materials Science Forum, 1077, pp. 79-86. DOI:10.4028/p-qiok7y
- Kuranga, I., Alafara, A., Halimah, F., Fausat, A., Mercy, O. & Tripathy, B. (2018). Production and characterization of water treatment coagulant from locally sourced kaolin clays. Journal of Applied Sciences and Environmental Management, 22(1), pp. 103-109. DOI:10.4314/jasem.v22i1.19
- Kutláková, K. M., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:10.1016/j.apcatb.2014.07.018
- Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. & Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum. Applied Catalysis B: Environmental, 236, pp. 76-87. DOI:10.1016/j.apcatb.2018.04.083
- Li, C., Zhu, N., Dong, X., Zhang, X., Chen, T., Zheng, S. & Sun, Z. (2020). Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly. Advanced Powder Technology, 31(3), pp. 1241-1252. DOI:10.1016/j.apt.2020.01.007
- Liang, X., Li, Q. & Fang, Y. (2023). Preparation and characterization of modified kaolin by a mechanochemical method. Materials, 16(8), 3099. DOI:10.3390/ma16083099
- Lin, M., Chen, H., Zhang, Z. & Wang, X. (2023). Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 25(6), pp. 4388-4407. DOI:10.1039/D2CP05281D
- Lindberg, J. D. & Snyder, D. G. (1972). Diffuse reflectance spectra of several clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 57(3-4_Part_1), pp. 485-493.
- Liu, J., Dong, G., Jing, J., Zhang, S., Huang, Y. & Ho, W. (2021). Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. Environmental Science: Nano, 8(12), pp. 3846-3854. DOI:10.1039/D1EN00832C
- Liu, Q., Wang, S., Han, F., Lv, S., Yan, Z., Xi, Y. & Ouyang, J. (2022). Biomimetic tremelliform ultrathin MnO2/CuO nanosheets on kaolinite driving superior catalytic oxidation: an example of CO. ACS Applied Materials & Interfaces, 14(39), pp. 44345-44357. DOI:10.1021/acsami.2c11640
- Ma, R., Zhao, S., Jiang, X., Qi, Y., Zhao, T., Liu, Z., Han, C. & Shen, Y. (2023). Modification and regulation of acid-activated kaolinite with TiO2 nanoparticles and their enhanced photocatalytic activity to sodium ethyl xanthate. Environmental Technology Reviews, 12(1), pp. 272-285. DOI:10.1080/21622515.2023.2202827
- Mamulová Kutláková, K., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:DOI:10.1016/j.apcatb.2014.07.018
- Mei, X., Li, S., Chen, Y., Huang, X., Cao, Y., Guro, V. P. & Li, Y. (2023). Silica–chitosan composite aerogels for thermal insulation and adsorption. Crystals, 13(5), 755. DOI:10.3390/cryst13050755
- Mohd Yunus, N. Z., Ayub, A., Wahid, M. A., Mohd Satar, M. K. I., Abudllah, R. A., Yaacob, H., Hassan, S. A. & Hezmi, M. A. (2019). Strength behaviour of kaolin treated by demolished concrete materials. IOP Conference Series: Earth and Environmental Science, 220, 012001. DOI 10.1088/1755-1315/220/1/012001
- Omary, P. M., Ricky, E. X., Kasimu, N. A., Madirisha, M. M., Kilulya, K. F. & Lugwisha, E. H. (2023). Potential of Kaolin Clay on Formulation of Water Based Drilling Mud Reinforced with Biopolymer, Surfactant, and Limestone. Tanzania Journal of Science, 49(1), pp. 218-229. https://DOI:10.4314/tjs.v49i1.19
- Panda, T., Roy, N., Dutta, S. & Maity, T. (2023). Implementations of Photocatalysis: A Futuristic Approach. International Journal of Chemical and Environmental Sciences, 4(3), pp. 48-61. DOI:10.15864/ijcaes.4305
- Rajan, M. S., Yoon, M. & Thomas, J. (2022). Kaolin-graphene carboxyl incorporated TiO2 as efficient visible light active photocatalyst for the degradation of cefuroxime sodium. Photochemical & Photobiological Sciences, 21(4), pp. 509-528. DOI:10.1007/s43630-022-00179-2
- Rekik, S. B., Gassara, S., Bouaziz, J., Baklouti, S. & Deratani, A. (2023). Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization. Membranes, 13(2), 229. DOI:10.3390/membranes13020229
- Román, C., Jeon, H., Zhu, H. & Ozkan, E. (2023). Evaluating Kaolin Clay as a Potential Substance for ISO Sprayer Cleaning System Tests. Applied Engineering in Agriculture, 39(3), pp. 347-358. https://doi: 10.13031/aea.15466
- Romolini, G., Gambucci, M., Ricciarelli, D., Tarpani, L., Zampini, G. & Latterini, L. (2021). Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochemical & Photobiological Sciences, 20(9), pp. 1161-1172. DOI:10.1007/s43630-021-00089-9
- Roques-Carmes, T., Alem, H., Hamieh, T., Toufaily, J., Frochot, C. & Villiéras, F. (2020). 3 - Different strategies of surface modification to improve the photocatalysis properties: pollutant adsorption, visible activation, and catalyst recovery. [In] C. Mustansar Hussain & A. K. Mishra (Eds.), Handbook of Smart Photocatalytic Materials (pp. 39-57). Elsevier. DOI:10.1016/B978-0-12-819049-4.00007-6
- San Nicolas, R., Cyr, M. & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83, pp. 253-262. DOI:10.1016/j.clay.2013.08.036
- Sbeih, S. A. & Zihlif, A. M. (2009). Optical and electrical properties of kaolinite/polystyrene composite. Journal of Physics D: Applied Physics, 42(14), 145405. https://DOI 10.1088/0022-3727/42/14/145405
- Serna-Galvis, E. A., Martínez-Mena, Y. L., Arboleda-Echavarría, J., Hoyos-Ayala, D. A., Echavarría-Isaza, A. & Torres-Palma, R. A. (2023). Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chemical Engineering Research and Design, 193, pp. 121-131. DOI:10.1016/j.cherd.2023.03.015
- Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A. & Tajassosi, S. (2014). Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Industrial & Engineering Chemistry Research, 53(3), pp. 1079-1087. DOI:10.1021/ie4032583
- Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45(1), pp. 126-135. DOI 10.24425/aep.2019.126427
- Sofi’i, Y. K., Sudarman, S. & Suprianto, H. (2022). Application of molecular dynamic energy of kaolin clay as photocatalysts. AIP Conference Proceedings, 2453(1), 020014. DOI:10.1063/5.0094250
- Sun, Z., Li, C., Du, X., Zheng, S. & Wang, G. (2018). Facile synthesis of two clay minerals supported graphitic carbon nitride composites as highly efficient visible-light-driven photocatalysts. Journal of colloid and interface science, 511, pp. 268-276. DOI:10.1016/j.jcis.2017.10.005
- Sun, Z., Yuan, F., Li, X., Li, C., Xu, J. & Wang, B. (2018). Fabrication of novel cyanuric acid modified g-C3N4/kaolinite composite with enhanced visible light-driven photocatalytic activity. Minerals, 8(10), 437. DOI:10.3390/min8100437
- Taheri, B. (2023). Iron removal from kaolin by oxalic acid using a novel pre-agitating and high-pressure washing technique. Clay Minerals, 58(2), pp. 224-233. DOI:10.1180/clm.2023.11
- Tanwongwan, W., Wongkitikun, T., Onpecht, K., Srilai, S., Assabumrungrat, S., Chollacoop, N. & Eiad-ua, A. (2020). Structure development of Thailand’s kaolin by mechanochemical technique. AIP Conference Proceedings, 2279(1), 060001. DOI:10.1063/5.0025045
- Tharakeswari, S., Saravanan, D., Agrawal, A. K. & Jassal, M. (2022). Kaolin-Calcium Carbonate-Titanium Dioxide (KCT) Composites for Decolourisation of Reactive Dye Effluent. Journal of the Chemical Society of Pakistan, 44(6). DOI:10.52568/001188/jcsp/44.06.2022
- Ugwuja, C. G., Adelowo, O. O., Ogunlaja, A., Omorogie, M. O., Olukanni, O. D., Ikhimiukor, O. O., Iermak, I., Kolawole, G. A., Guenter, C. & Taubert, A. (2019). Visible-light- mediated photodynamic water disinfection@ bimetallic-doped hybrid clay nanocomposites. ACS Applied Materials & Interfaces, 11(28), pp. 25483-25494. DOI:10.1021/acsami.9b01212
- Usman, J., Hafiz, M., Othman, D., Ismail, A., Rahman, M., Jaafar, J. & Abdullahi, T. (2020). Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian J Anal Sci, 16(2), pp. 78-82. DOI:10.11113/mjfas.v16n2.1484
- Vagvolgyi, V., Zsirka, B., Győrfi, K., Horváth, E. & Kristóf, J. (2021). Different Methods for Preparation of Active Sites in Kaolinite Surface and their Usability in Photocatalytic Processes, [in] Proceedings of the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021, MDPI: Basel, Switzerland, DOI:10.3390/iecms2021-09357
- Varajāo, A. F. D. C., Gilkes, R. J. & Hart, R. D. (2001). The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clays and Clay Minerals, 49(1), pp. 44-59. DOI:10.1346/CCMN.2001.0490104
- Wang, L. & Yu, J. (2023). Principles of photocatalysis. In Interface science and technology (Vol. 35, pp. 1-52). Elsevier. DOI:10.1016/B978-0-443-18786-5.00002-0
- Wang, T., Xu, L., Cui, J., Wu, J., Li, Z., Wu, Y., Tian, B. & Tian, Y. (2022). Enhanced Charge Separation for Efficient Photocatalytic H2 Production by Long-Lived Trap-State-Induced Interfacial Charge Transfer. Nano Letters, 22(16), 6664-6670. DOI:10.1021/acs.nanolett.2c02005 Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
- Xiao, Y., Tian, X., Chen, Y., Xiao, X., Chen, T. & Wang, Y. (2023). Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. Materials, 16(10), 3745. DOI:10.3390/ma16103745
- Xu, H., Sun, S., Jiang, S., Wang, H., Zhang, R. & Liu, Q. (2018). Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO 2 composite. Journal of sol-gel science and technology, 87, pp. 676-684. DOI:10.1007/s10971-018-4760-5
- Yahaya, S., Jikan, S. S., Badarulzaman, N. A. & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki, Volume 3, Number 10, 2017, pp. 1001-1004(4) DOI:10.22178/pos.27-1
- Yu, J. M. & Jang, J.-W. (2023). Organic Semiconductor-Based Photoelectrochemical Cells for Efficient Solar-to-Chemical Conversion. Catalysts, 13(5), 814. DOI:10.3390/catal13050814
- Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N. & Feng, L. (2018). An effective flocculation method to the kaolin wastewater treatment by a cationic polyacrylamide (CPAM): Preparation, characterization, and flocculation performance. International Journal of Polymer Science, pp. 1-12. DOI:10.1155/2018/5294251
- Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T. & Liu, G. (2023). Efficient doping induced by charge transfer at the hetero-interface to enhance photocatalytic performance. ACS Applied Materials & Interfaces, 15(10), pp. 12924-12935. DOI:10.1021/acsami.2c19209
- Zhang, C., Xie, C., Gao, Y., Tao, X., Ding, C., Fan, F. & Jiang, H. L. (2022). Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angewandte Chemie, 134(28), e202204108. DOI:10.1002/ange.202204108
- Zhang, Q., Shan, A., Wang, D., Jian, L., Cheng, L., Ma, H. & Li, J. (2013). A new acidic Ti sol impregnated kaolin photocatalyst: synthesis, characterization and visible light photocatalytic performance. Journal of sol-gel science and technology, 65, pp. 204-211. DOI:10.1007/s10971-012-2925-1
- Zhang, Y., Gan, H. & Zhang, G. (2011). A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 172(2-3), pp. 936-943. DOI:10.1016/j.cej.2011.07.005
- Zvyagin, B. & Drits, V. (1996). Interrelated features of structure and stacking of kaolin mineral layers. Clays and Clay Minerals, 44, pp. 297-303. DOI: 10.1346/CCMN.1996.0440301
Date
10.09.2024Type
ArticleIdentifier
DOI: 10.24425/aep.2024.151686DOI
10.24425/aep.2024.151686Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science