Details

Title

Enhancing photocatalytic performance of kaolin clay: an overview of treatment strategies and applications

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

3

Authors

Affiliation

Boonphan, Samor : Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand ; Prachakiew, Suriyong : Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand ; Klinbumrung, Khuruwan : Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand ; Thongrote, Chananbhorn : Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand ; Klinbumrung, Arrak : Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand ; Klinbumrung, Arrak : School of Science, University of Phayao, Phayao, Thailand

Keywords

Kaolin clay; ; Photocatalytic; ; Surface modification; ; Water treatment;

Divisions of PAS

Nauki Techniczne

Coverage

54-64

Publisher

Polish Academy of Sciences

Bibliography

  1. Abdo, S. M., El-Hout, S. I., Shawky, A., Rashed, M. N. & El-Sheikh, S. M. (2022). Visible-light-driven photodegradation of organic pollutants by simply exfoliated kaolinite nanolayers with enhanced activity and recyclability. Environmental Research, 214, 113960. DOI:10.1016/j.envres.2022.113960
  2. Abou Alsoaud, M. M., Taher, M. A., Hamed, A. M., Elnouby, M. S. & Omer, A. M. (2022). Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Scientific Reports, 12(1), 12972. DOI:10.1038/s41598-022-17305-w
  3. Akpotu, S. O., Lawal, I. A., Diagboya, P. N., Mtunzi, F. M. & Ofomaja, A. E. (2022). Engineered geomedia kaolin clay-reduced graphene oxide–polymer composite for the remediation of olaquindox from water. ACS omega, 7(38), pp. 34054-34065. DOI:10.1021/acsomega.2c03253
  4. Al-Qadri, F. A. & Alsaiari, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the Removal of cupper (II). Archives of Environmental Protection, 49(2). https://DOI 10.24425/aep.2023.145894
  5. Al-Rudainy, A. J., Mustafa, S., Ashor, A. & Bader, M. (2023). Role of Kaolin on Hemtological, Biochemical and Survival Rate of Cyprinus Carpio Challenged with Pesuydomonas Aeruginosa. Iraqi Journal of Agricultural Sciences, 54(2), pp. 472-477. DOI:10.36103/ijas.v54i2.1723
  6. Alkhabbas, M., Odeh, F., Alzughoul, K., Afaneh, R. & Alahmad, W. (2023). Jordanian Kaolinite with TiO2 for Improving Solar Light Harvesting Used in Dye Removal. Molecules, 28(3), 989. DOI:10.3390/molecules28030989
  7. Aritonang, A. B., Selpiana, H., Wibowo, M. A. & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(3), pp. 277-286. DOI:10.20961/jkpk.v7i3.66567
  8. Asmare, Z. G., Aragaw, B. A., Atlabachew, M. & Wubieneh, T. A. (2022). Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS omega, 8(1), pp. 480-491. DOI:10.1021/acsomega.2c05265
  9. Ayalew, A. A. (2020). Development of kaolin clay as a cost-effective technology for defluoridation of groundwater. International Journal of Chemical Engineering, 1-10. DOI:10.1155/2020/8820727
  10. Ayalew, A. A. (2023). Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process. Advances in Materials Science and Engineering, DOI:10.1155/2023/9104807
  11. Bahniuk, M. S., Alidina, F., Tan, X. & Unsworth, L. D. (2022). The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Frontiers in Bioengineering and Biotechnology, 10, 1048755. DOI:10.3389/fbioe.2022.1048755
  12. Belachew, N. & Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1), pp. 1-8. DOI:10.1007/s13201-019-1121-7
  13. Belmokhtar, N., Ammari, M. & Brigui, J. (2017). Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Construction and Building Materials, 146, pp. 621-629. DOI:10.1016/j.conbuildmat.2017.04.127
  14. Bhatti, Q. A., Baloch, M. K., Schwarz, S. & Ishaq, M. (2023). Impact of mechanochemical treatment on surface chemistry and flocculation of kaolinite dispersion. Asia‐Pacific Journal of Chemical Engineering, 18(3), e2886. DOI:10.1002/apj.2886
  15. Bondarieva, A., Yaichenia, I., Zahorodniuk, N., Tobilko, V. & Pavlenko, V. (2022). Water purification from cationic organic dyes using kaolin-based ceramic materials. Technology audit and production reserves, 2(3/64), pp. 10-16. https://doi:10.15587/2706-5448.2022.254584.
  16. Bousbih, S., Errais, E., Darragi, F., Duplay, J., Trabelsi-Ayadi, M., Daramola, M. O. & Ben Amar, R. (2021). Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay. Environmental Technology, 42(21), pp. 3348-3359. DOI:10.1080/09593330.2020.1729242
  17. Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  18. Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z. & Wu, J. (2023). The application of mineral kaolinite for environment decontamination: A review. Catalysts, 13(1), 123. DOI:10.3390/catal13010123
  19. Chuaicham, C., Trakulmututa, J., Shu, K., Shenoy, S., Srikhaow, A., Zhang, L., Mohan, S., Sekar, K. & Sasaki, K. (2023). Recent clay-based photocatalysts for wastewater treatment. Separations, 10(2), 77. DOI:10.3390/separations10020077
  20. Ding, S. L., Zhang, L. L., Xu, B. H. & Liu, Q. F. (2012). Review and prospect of surface modification of kaolin. Advanced Materials Research, 430, pp. 1382-1385. DOI:10.4028/www.scientific.net/AMR.430-432.1382
  21. El-Sheikh, S., Shawky, A., Abdo, S. M., Rashed, M. N. & El-Dosoqy, T. I. (2020). Preparation and characterisation of nanokaolinite photocatalyst for removal of P-nitrophenol under UV irradiation. International Journal of Nanomanufacturing, 16(3), pp. 232-242. DOI:10.1504/IJNM.2020.108042
  22. El-Sherbiny, S., Morsy, F. A., Hassan, M. S. & Mohamed, H. F. (2015). Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research, 12, pp. 739-749. DOI:10.1007/s11998-015-9672-5
  23. Erasto, L., Hellar-Kihampa, H., Mgani, Q. A. & Lugwisha, E. H. J. (2023). Comparative analysis of cationic dye adsorption efficiency of thermally and chemically treated Tanzanian kaolin. Environmental Earth Sciences, 82(4), 101. DOI:10.1007/s12665-023-10782-w
  24. Eze, K., Nwadiogbu, J., Nwankwere, E., Appl, A. & Res, S. (2012). Effect of acid treatments on the physicochemical properties of kaolin clay. Archives of Applied Science Research, 4(2), pp. 792-794.
  25. Fourdrin, C., Balan, E., Allard, T., Boukari, C. & Calas, G. (2009). Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Physics and Chemistry of Minerals, 36, pp. 291-299. DOI:10.1007/s00269-008-0277-8
  26. Gad, A., Al-Mur, B. A., Alsiary, W. A. & Abd El Bakey, S. M. (2022). Optimization of carboniferous Egyptian kaolin treatment for pharmaceutical applications. Sustainability, 14(4), 2388. DOI:10.3390/su14042388
  27. Goodarzi, N., Ashrafi-Peyman, Z., Khani, E. & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102. DOI:10.3390/catal13071102
  28. Hoai, P. T. T., Huong, N. T. M., Huong, P. T. & Viet, N. M. (2022). Improved the light adsorption and separation of charge carriers to boost photocatalytic conversion of CO2 by using silver doped ZnO photocatalyst. Catalysts, 12(10), 1194. DOI:10.3390/catal12101194
  29. Hu, P., Zhang, Y. & Cheng, G. (2023). Molecular Catalysis, 547, 113312. DOI:10.1016/j.mcat.2023.113312
  30. Huang, Z., Li, L., Li, Z., Li, H. & Wu, J. (2020). Synthesis of novel kaolin-supported g-C3N4/CeO2 composites with enhanced photocatalytic removal of ciprofloxacin. Materials, 13(17), 3811. DOI:10.3390/ma13173811
  31. Jiang, D., Liu, Z., Fu, L., Jing, H. & Yang, H. (2018). Efficient nanoclay-based composite photocatalyst: the role of nanoclay in photogenerated charge separation. The Journal of Physical Chemistry C, 122(45), pp. 25900-25908. DOI:10.1021/acs.jpcc.8b08663
  32. Kamaluddin, M. R., Zamri, N. I. I., Kusrini, E., Prihandini, W. W., Mahadi, A. H. & Usman, A. (2021). Photocatalytic activity of kaolin–titania composites to degrade methylene blue under UV light irradiation; kinetics, mechanism and thermodynamics. Reaction Kinetics, Mechanisms and Catalysis, 133(1), pp. 517-529. DOI:10.1007/s11144-021-01986-x
  33. Kareem, R. A., Alqadoori, M. A. I. & Ismail, M. M. (2022). Enhancement mechanical, thermal and dielectrical characteristics of polystyrene reinforcement by glass fiber and additive kaolin. Materials Science Forum, 1077, pp. 79-86. DOI:10.4028/p-qiok7y
  34. Kuranga, I., Alafara, A., Halimah, F., Fausat, A., Mercy, O. & Tripathy, B. (2018). Production and characterization of water treatment coagulant from locally sourced kaolin clays. Journal of Applied Sciences and Environmental Management, 22(1), pp. 103-109. DOI:10.4314/jasem.v22i1.19
  35. Kutláková, K. M., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:10.1016/j.apcatb.2014.07.018
  36. Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. & Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum. Applied Catalysis B: Environmental, 236, pp. 76-87. DOI:10.1016/j.apcatb.2018.04.083
  37. Li, C., Zhu, N., Dong, X., Zhang, X., Chen, T., Zheng, S. & Sun, Z. (2020). Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly. Advanced Powder Technology, 31(3), pp. 1241-1252. DOI:10.1016/j.apt.2020.01.007
  38. Liang, X., Li, Q. & Fang, Y. (2023). Preparation and characterization of modified kaolin by a mechanochemical method. Materials, 16(8), 3099. DOI:10.3390/ma16083099
  39. Lin, M., Chen, H., Zhang, Z. & Wang, X. (2023). Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 25(6), pp. 4388-4407. DOI:10.1039/D2CP05281D
  40. Lindberg, J. D. & Snyder, D. G. (1972). Diffuse reflectance spectra of several clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 57(3-4_Part_1), pp. 485-493.
  41. Liu, J., Dong, G., Jing, J., Zhang, S., Huang, Y. & Ho, W. (2021). Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. Environmental Science: Nano, 8(12), pp. 3846-3854. DOI:10.1039/D1EN00832C
  42. Liu, Q., Wang, S., Han, F., Lv, S., Yan, Z., Xi, Y. & Ouyang, J. (2022). Biomimetic tremelliform ultrathin MnO2/CuO nanosheets on kaolinite driving superior catalytic oxidation: an example of CO. ACS Applied Materials & Interfaces, 14(39), pp. 44345-44357. DOI:10.1021/acsami.2c11640
  43. Ma, R., Zhao, S., Jiang, X., Qi, Y., Zhao, T., Liu, Z., Han, C. & Shen, Y. (2023). Modification and regulation of acid-activated kaolinite with TiO2 nanoparticles and their enhanced photocatalytic activity to sodium ethyl xanthate. Environmental Technology Reviews, 12(1), pp. 272-285. DOI:10.1080/21622515.2023.2202827
  44. Mamulová Kutláková, K., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:DOI:10.1016/j.apcatb.2014.07.018
  45. Mei, X., Li, S., Chen, Y., Huang, X., Cao, Y., Guro, V. P. & Li, Y. (2023). Silica–chitosan composite aerogels for thermal insulation and adsorption. Crystals, 13(5), 755. DOI:10.3390/cryst13050755
  46. Mohd Yunus, N. Z., Ayub, A., Wahid, M. A., Mohd Satar, M. K. I., Abudllah, R. A., Yaacob, H., Hassan, S. A. & Hezmi, M. A. (2019). Strength behaviour of kaolin treated by demolished concrete materials. IOP Conference Series: Earth and Environmental Science, 220, 012001. DOI 10.1088/1755-1315/220/1/012001
  47. Omary, P. M., Ricky, E. X., Kasimu, N. A., Madirisha, M. M., Kilulya, K. F. & Lugwisha, E. H. (2023). Potential of Kaolin Clay on Formulation of Water Based Drilling Mud Reinforced with Biopolymer, Surfactant, and Limestone. Tanzania Journal of Science, 49(1), pp. 218-229. https://DOI:10.4314/tjs.v49i1.19
  48. Panda, T., Roy, N., Dutta, S. & Maity, T. (2023). Implementations of Photocatalysis: A Futuristic Approach. International Journal of Chemical and Environmental Sciences, 4(3), pp. 48-61. DOI:10.15864/ijcaes.4305
  49. Rajan, M. S., Yoon, M. & Thomas, J. (2022). Kaolin-graphene carboxyl incorporated TiO2 as efficient visible light active photocatalyst for the degradation of cefuroxime sodium. Photochemical & Photobiological Sciences, 21(4), pp. 509-528. DOI:10.1007/s43630-022-00179-2
  50. Rekik, S. B., Gassara, S., Bouaziz, J., Baklouti, S. & Deratani, A. (2023). Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization. Membranes, 13(2), 229. DOI:10.3390/membranes13020229
  51. Román, C., Jeon, H., Zhu, H. & Ozkan, E. (2023). Evaluating Kaolin Clay as a Potential Substance for ISO Sprayer Cleaning System Tests. Applied Engineering in Agriculture, 39(3), pp. 347-358. https://doi: 10.13031/aea.15466
  52. Romolini, G., Gambucci, M., Ricciarelli, D., Tarpani, L., Zampini, G. & Latterini, L. (2021). Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochemical & Photobiological Sciences, 20(9), pp. 1161-1172. DOI:10.1007/s43630-021-00089-9
  53. Roques-Carmes, T., Alem, H., Hamieh, T., Toufaily, J., Frochot, C. & Villiéras, F. (2020). 3 - Different strategies of surface modification to improve the photocatalysis properties: pollutant adsorption, visible activation, and catalyst recovery. [In] C. Mustansar Hussain & A. K. Mishra (Eds.), Handbook of Smart Photocatalytic Materials (pp. 39-57). Elsevier. DOI:10.1016/B978-0-12-819049-4.00007-6
  54. San Nicolas, R., Cyr, M. & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83, pp. 253-262. DOI:10.1016/j.clay.2013.08.036
  55. Sbeih, S. A. & Zihlif, A. M. (2009). Optical and electrical properties of kaolinite/polystyrene composite. Journal of Physics D: Applied Physics, 42(14), 145405. https://DOI 10.1088/0022-3727/42/14/145405
  56. Serna-Galvis, E. A., Martínez-Mena, Y. L., Arboleda-Echavarría, J., Hoyos-Ayala, D. A., Echavarría-Isaza, A. & Torres-Palma, R. A. (2023). Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chemical Engineering Research and Design, 193, pp. 121-131. DOI:10.1016/j.cherd.2023.03.015
  57. Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A. & Tajassosi, S. (2014). Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Industrial & Engineering Chemistry Research, 53(3), pp. 1079-1087. DOI:10.1021/ie4032583
  58. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45(1), pp. 126-135. DOI 10.24425/aep.2019.126427
  59. Sofi’i, Y. K., Sudarman, S. & Suprianto, H. (2022). Application of molecular dynamic energy of kaolin clay as photocatalysts. AIP Conference Proceedings, 2453(1), 020014. DOI:10.1063/5.0094250
  60. Sun, Z., Li, C., Du, X., Zheng, S. & Wang, G. (2018). Facile synthesis of two clay minerals supported graphitic carbon nitride composites as highly efficient visible-light-driven photocatalysts. Journal of colloid and interface science, 511, pp. 268-276. DOI:10.1016/j.jcis.2017.10.005
  61. Sun, Z., Yuan, F., Li, X., Li, C., Xu, J. & Wang, B. (2018). Fabrication of novel cyanuric acid modified g-C3N4/kaolinite composite with enhanced visible light-driven photocatalytic activity. Minerals, 8(10), 437. DOI:10.3390/min8100437
  62. Taheri, B. (2023). Iron removal from kaolin by oxalic acid using a novel pre-agitating and high-pressure washing technique. Clay Minerals, 58(2), pp. 224-233. DOI:10.1180/clm.2023.11
  63. Tanwongwan, W., Wongkitikun, T., Onpecht, K., Srilai, S., Assabumrungrat, S., Chollacoop, N. & Eiad-ua, A. (2020). Structure development of Thailand’s kaolin by mechanochemical technique. AIP Conference Proceedings, 2279(1), 060001. DOI:10.1063/5.0025045
  64. Tharakeswari, S., Saravanan, D., Agrawal, A. K. & Jassal, M. (2022). Kaolin-Calcium Carbonate-Titanium Dioxide (KCT) Composites for Decolourisation of Reactive Dye Effluent. Journal of the Chemical Society of Pakistan, 44(6). DOI:10.52568/001188/jcsp/44.06.2022
  65. Ugwuja, C. G., Adelowo, O. O., Ogunlaja, A., Omorogie, M. O., Olukanni, O. D., Ikhimiukor, O. O., Iermak, I., Kolawole, G. A., Guenter, C. & Taubert, A. (2019). Visible-light- mediated photodynamic water disinfection@ bimetallic-doped hybrid clay nanocomposites. ACS Applied Materials & Interfaces, 11(28), pp. 25483-25494. DOI:10.1021/acsami.9b01212
  66. Usman, J., Hafiz, M., Othman, D., Ismail, A., Rahman, M., Jaafar, J. & Abdullahi, T. (2020). Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian J Anal Sci, 16(2), pp. 78-82. DOI:10.11113/mjfas.v16n2.1484
  67. Vagvolgyi, V., Zsirka, B., Győrfi, K., Horváth, E. & Kristóf, J. (2021). Different Methods for Preparation of Active Sites in Kaolinite Surface and their Usability in Photocatalytic Processes, [in] Proceedings of the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021, MDPI: Basel, Switzerland, DOI:10.3390/iecms2021-09357
  68. Varajāo, A. F. D. C., Gilkes, R. J. & Hart, R. D. (2001). The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clays and Clay Minerals, 49(1), pp. 44-59. DOI:10.1346/CCMN.2001.0490104
  69. Wang, L. & Yu, J. (2023). Principles of photocatalysis. In Interface science and technology (Vol. 35, pp. 1-52). Elsevier. DOI:10.1016/B978-0-443-18786-5.00002-0
  70. Wang, T., Xu, L., Cui, J., Wu, J., Li, Z., Wu, Y., Tian, B. & Tian, Y. (2022). Enhanced Charge Separation for Efficient Photocatalytic H2 Production by Long-Lived Trap-State-Induced Interfacial Charge Transfer. Nano Letters, 22(16), 6664-6670. DOI:10.1021/acs.nanolett.2c02005 Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  71. Xiao, Y., Tian, X., Chen, Y., Xiao, X., Chen, T. & Wang, Y. (2023). Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. Materials, 16(10), 3745. DOI:10.3390/ma16103745
  72. Xu, H., Sun, S., Jiang, S., Wang, H., Zhang, R. & Liu, Q. (2018). Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO 2 composite. Journal of sol-gel science and technology, 87, pp. 676-684. DOI:10.1007/s10971-018-4760-5
  73. Yahaya, S., Jikan, S. S., Badarulzaman, N. A. & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki, Volume 3, Number 10, 2017, pp. 1001-1004(4) DOI:10.22178/pos.27-1
  74. Yu, J. M. & Jang, J.-W. (2023). Organic Semiconductor-Based Photoelectrochemical Cells for Efficient Solar-to-Chemical Conversion. Catalysts, 13(5), 814. DOI:10.3390/catal13050814
  75. Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N. & Feng, L. (2018). An effective flocculation method to the kaolin wastewater treatment by a cationic polyacrylamide (CPAM): Preparation, characterization, and flocculation performance. International Journal of Polymer Science, pp. 1-12. DOI:10.1155/2018/5294251
  76. Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T. & Liu, G. (2023). Efficient doping induced by charge transfer at the hetero-interface to enhance photocatalytic performance. ACS Applied Materials & Interfaces, 15(10), pp. 12924-12935. DOI:10.1021/acsami.2c19209
  77. Zhang, C., Xie, C., Gao, Y., Tao, X., Ding, C., Fan, F. & Jiang, H. L. (2022). Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angewandte Chemie, 134(28), e202204108. DOI:10.1002/ange.202204108
  78. Zhang, Q., Shan, A., Wang, D., Jian, L., Cheng, L., Ma, H. & Li, J. (2013). A new acidic Ti sol impregnated kaolin photocatalyst: synthesis, characterization and visible light photocatalytic performance. Journal of sol-gel science and technology, 65, pp. 204-211. DOI:10.1007/s10971-012-2925-1
  79. Zhang, Y., Gan, H. & Zhang, G. (2011). A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 172(2-3), pp. 936-943. DOI:10.1016/j.cej.2011.07.005
  80. Zvyagin, B. & Drits, V. (1996). Interrelated features of structure and stacking of kaolin mineral layers. Clays and Clay Minerals, 44, pp. 297-303. DOI: 10.1346/CCMN.1996.0440301

Date

10.09.2024

Type

Article

Identifier

DOI: 10.24425/aep.2024.151686

DOI

10.24425/aep.2024.151686

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×