Details

Title

Air quality prediction using stacked bi- long short-term memory and convolutional neural network in India

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

4

Authors

Affiliation

Karkuzhali S : Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India ; Puyalnithi Thendral : Department of Artificial Intelligence and Data Science,Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India ; Nirmalan R2 : Department of Artificial Intelligence and Data Science,Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

Keywords

air quality; ; Bi-Long Short-Term Memory; ; Convolutional Neural Network; ; Adam Optimizer; ; training process; ; hybrid analysis; ; pollution;

Divisions of PAS

Nauki Techniczne

Coverage

9-21

Publisher

Polish Academy of Sciences

Bibliography

  1. Akinosho, T. D., Oyedele, L. O., Bilal, M., Barrera-Animas, A. Y., Gbadamosi, A. Q. & Olawale, O. A. (2022). A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways. Ecological Informatics, 69, 101609. DOI:10.1016/j.ecoinf.2022.101609
  2. Al-Eidi, S., Amsaad, F., Darwish, O., Tashtoush, Y., Alqahtani, A. & Niveshitha, N. (2023). Comparative Analysis Study for Air Quality Prediction in Smart Cities Using Regression Techniques. IEEE Access. DOI:10.1109/ACCESS.2023.3280129
  3. Cao, Y., Zhang, D., Ding, S., Zhong, W. & Yan, C. (2023). A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition. Tsinghua Science and Technology, 29(1), 99-111. DOI:10.26599/TST.2023.2200016
  4. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF). Archives of Environmental Protection, 49(2). DOI:10.24425/aep.2023.144733
  5. Drewil, G. I. & AlBahadili, R. J. (2022). Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Measurement: Sensors, 24, 100546. DOI:10.1016/j.measen.2022.100546
  6. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138474
  7. Fu, L., Li, J. & Chen, Y. (2023). An innovative decision-making method for air quality monitoring based on big data-assisted artificial intelligence technique. Journal of Innovation & Knowledge, 8(2), 100294. DOI:10.1016/j.jik.2023.100294
  8. Godłowska, J., Kaszowski, K. & Kaszowski, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser PolandApplication of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection, 48(3). DOI:10.24425/aep.2022.142698
  9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection, 47(2). DOI:10.24425/aep.2021.137281
  10. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). A set of deep learning algorithms for air quality prediction applications. Software Impacts, 17, 100562. DOI:10.1016/j.simpa.2023.100562
  11. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). Graph Neural Network for Air Quality Prediction: A Case Study in Madrid. IEEE Access, 11, 2729-2742. DOI:10.1109/ACCESS.2023.3244295
  12. Janarthanan, R., Partheeban, P., Somasundaram, K. & Elamparithi, P. N. (2021). A deep learning approach for prediction of air quality index in a metropolitan city. Sustainable Cities and Society, 67, 102720. DOI:10.1016/j.scs.2021.102720
  13. Jurado, X., Reiminger, N., Benmoussa, M., Vazquez, J. & Wemmert, C. (2022). Deep learning methods evaluation to predict air quality based on Computational Fluid Dynamics. Expert Systems with Applications, 203, 117294. DOI:10.1016/j.eswa.2022.117294
  14. Kanmani, P., Selvaraj, P. & Burugari, V. K. (2022). An energy efficient approach of deep learning based soft sensor for air quality management. Measurement: Sensors, 24, 100460. DOI:10.1016/j.measen.2022.100460
  15. Liu, B., Yan, S., Li, J., Qu, G., Li, Y., Lang, J. & Gu, R. (2019). A sequence-to-sequence air quality predictor based on the n-step recurrent prediction. IEEE Access, 7, 43331-43345. DOI:10.1109/ACCESS.2019.2903323
  16. Liu, C., Pan, G., Song, D. & Wei, H. (2023). Air Quality Index Forecasting Via Genetic Algorithm-Based Improved Extreme Learning Machine. IEEE Access. DOI:10.1109/ACCESS.2023.3273346
  17. Lu, T., Gu, C., Yuan, D., Zhang, K. & Shao, C. (2023). Deep learning model for displacement monitoring of super high arch dams based on measured temperature data. Measurement, 222, 113579. DOI:10.1016/j.measurement.2023.113579
  18. Matthaios, V. N., Knibbs, L. D., Kramer, L. J., Crilley, L. R. & Bloss, W. J. (2023). Predicting real-time within-vehicle air pollution exposure with mass-balance and machine learning approaches using on-road and air quality data. Atmospheric Environment, 120233. DOI:10.1016/j.atmosenv.2023.120233
  19. Prado-Rujas, I. I., García-Dopico, A., Serrano, E., Córdoba, M. L. & Pérez, M. S. (2024). A multivariable sensor-agnostic framework for spatio-temporal air quality forecasting based on Deep Learning. Engineering Applications of Artificial Intelligence, 127, 107271. DOI:10.1016/j.engappai.2023.107271
  20. Shao, Q., Chen, J. & Jiang, T. (2023). A novel coupled optimization prediction model for air quality. IEEE Access. DOI:10.1109/ACCESS.2023.3267475
  21. Shin, S., Baek, K. & So, H. (2023). Rapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model. Building and Environment, 234, 110191. DOI:10.1016/j.buildenv.2023.110191
  22. Wang, X., Wang, M., Liu, X., Mao, Y., Chen, Y. & Dai, S. (2024). Surveillance-image-based outdoor air quality monitoring. Environmental Science and Ecotechnology, 18, 100319. DOI:10.1016/j.ese.2024.100319
  23. Wardana, I. N. K., Fahmy, S. A. & Gardner, J. W. (2023). TinyML Models for a Low-cost Air Quality Monitoring Device. IEEE Sensors Letters. DOI:10.1109/LSENS.2023.3247646
  24. Wood, D. A. (2022). Local integrated air quality predictions from meteorology (2015 to 2020) with machine and deep learning assisted by data mining. Sustainability Analytics and Modeling, 2, 100002. DOI:10.1016/j.susanm.2022.100002
  25. Yadav, N., Sorek-Hamer, M., Von Pohle, M., Asanjan, A. A., Sahasrabhojanee, A., Suel, E., Arku, R., Lingenfelter, V., Brauer, M., Ezzati, M. & Oza, N. (2023). Using Deep Transfer Learning and Satellite Imagery to Estimate Urban Air Quality in Data-Poor Regions. Environmental Pollution, 122914. DOI:10.1016/j.envpol.2023.122914
  26. Yang, Y., Mei, G. & Izzo, S. (2022). Revealing influence of meteorological conditions on air quality prediction using explainable deep learning. IEEE Access, 10, 50755-50773. DOI:10.1109/ACCESS.2022.3163935
  27. Yu, W., Nakisa, B., Ali, E., Loke, S. W., Stevanovic, S. & Guo, Y. (2023). Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study. Urban Climate, 51, 101599. DOI:10.1016/j.uclim.2023.101599
  28. Zhang, B., Wang, Z., Lu, Y., Li, M. Z., Yang, R., Pan, J., & Kou, Z. (2023). Air pollutant diffusion trend prediction based on deep learning for targeted season—North China as an example. Expert Systems with Applications, 232, 120718. DOI:10.1016/j.eswa.2023.120718
  29. Zhang, Y., Wang, Y., Gao, M., Ma, Q., Zhao, J., Zhang, R., Wang, Q. & Huang, L. (2019). A predictive data feature exploration-based air quality prediction approach. IEEE Access, 7, 30732-30743. DOI:10.1109/ACCESS.2019.2903346
  30. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138473

Date

16.12.2024

Type

Articles

Identifier

DOI: 10.24425/aep.2024.152891

DOI

10.24425/aep.2024.152891

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×