Details

Title

Adsorption of selected GHG on metal-organic frameworks in the context of accompanying thermal effects

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

4

Authors

Affiliation

Gajda, Aleksandra : Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland ; Jodłowski, Przemysław : Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland ; Kozieł, Katarzyna : Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland ; Kurowski, Grzegorz : Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland ; Hyjek, Kornelia : Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland ; Skoczylas, Norbert : AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland ; Pajdak, Anna : Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland

Keywords

Metal-organic frameworks; ; CO2 and CH4 adsorption; ; isosteric heat of adsorption; ; thermal selectivity;

Divisions of PAS

Nauki Techniczne

Coverage

51-63

Publisher

Polish Academy of Sciences

Bibliography

  1. Abdelnaby, M. M., Tayeb, I. M., Alloush, A. M., Alyosef, H. A., Alnoaimi, A., Zeama, M., Mohammed, M. G. & Onaizi, S. A. (2024). Post-synthetic modification of UiO-66 analogue metal-organic framework as potential solid sorbent for direct air capture, Journal of CO2 Utilization, 79, 102647. DOI:10.1016/j.jcou.2023.102647.
  2. Aniruddha, R., Sreedhar, I. & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future, Journal of CO2 Utilization, 42, 101297. DOI:10.1016/j.jcou.2020.101297.
  3. Barrett, E. P., Joyner, L. G. & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73, pp. 373–380. DOI:10.1021/ja01145a126.
  4. Becker, T. M., Heinen, J., Dubbeldam, D., Lin, L.-C. & Vlugt, T. J. H. (2017). Polarizable Force Fields for CO 2 and CH 4 Adsorption in M-MOF-74, The Journal of Physical Chemistry C, 121, pp. 4659–4673. DOI:10.1021/acs.jpcc.6b12052.
  5. Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. (2024). Direct Air capture (DAC) deployment: A review of the industrial deployment, Chemical Engineering Science, 283, 119416. DOI:10.1016/j.ces.2023.119416.
  6. Bordiga, S., Regli, L., Bonino, F., Groppo, E., Lamberti, C., Xiao, B., Wheatley, P. S., Morris, R. E. & Zecchina, A. (2007). Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR, Physical Chemistry Chemical Physics, 9, 2676. DOI:10.1039/b703643d.
  7. Brunauer, S., Emmett, P. H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60, pp. 309–319. DOI:10.1021/ja01269a023.
  8. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. (2014). Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev., 43, pp. 5594–5617. DOI:10.1039/C4CS00078A.
  9. Carreon, M. A. & Venna, S. R. (2020). Metal-Organic Framework Membranes for Molecular Gas Separations, World Scientific (Europe), 6. DOI:10.1142/q0200.
  10. Chai, W., Shen, Y., Wang, J. & Zhang, G. (2022). Applications of Metal-Organic Framework Materials, Journal of Physics: Conference Series, 2194, 012014. DOI:10.1088/1742-6596/2194/1/012014.
  11. Chakraborty, A., Saha, B. B., Ng, K. C., Koyama, S. & Srinivasan, K. (2009). Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces, Langmuir, 25, pp. 2204–2211. DOI:10.1021/la803289p.
  12. Choi, I., Jung, Y. E., Yoo, S. J., Kim, J. Y., Kim, H.-J., Lee, C. Y. & Jang, J. H. (2017). Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production, Journal of Electrochemical Science and Technology, 8, pp. 61–68. DOI:10.33961/JECST.2017.8.1.61.
  13. Chowdhury, P., Mekala, S., Dreisbach, F. & Gumma, S. (2012). Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity, Microporous and Mesoporous Materials, 152, pp. 246–252. DOI:10.1016/j.micromeso.2011.11.022.
  14. Cimino, R. T., Kowalczyk, P., Ravikovitch, P. I. & Neimark, A. V. (2017). Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory, Langmuir, 33, pp. 1769–1779. DOI:10.1021/acs.langmuir.6b04119.
  15. Czaja, A. U., Trukhan, N. & Müller, U. (2009). Industrial applications of metal–organic frameworks, Chemical Society Reviews, 38, 1284. DOI:10.1039/b804680h.
  16. Czarnota, R., Knapik, E., Wojnarowski, P., Janiga, D. & Stopa, J. (2019). Carbon Dioxide Separation Technologies, Archives of Mining Sciences, 64, pp. 487–498. DOI:10.24425/ams.2019.129364.
  17. Dhakshinamoorthy, A., Li, Z. & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks, Chemical Society Reviews, 47, pp. 8134–8172. DOI:10.1039/C8CS00256H.
  18. Ding, M., Cai, X. & Jiang, H.-L. (2019). Improving MOF stability: approaches and applications, Chemical Science, 10, pp. 10209–10230. DOI:10.1039/C9SC03916C
  19. Elhenawy, S. E. M., Khraisheh, M., AlMomani, F. & Walker, G. (2020). Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2, Catalysts, 10, 1293. DOI:10.3390/catal10111293.
  20. Erans, M., Sanz-Pérez, E. S., Hanak, D. P., Clulow, Z., Reiner, D. M. & Mutch, G. A. (2022). Direct air capture: process technology, techno-economic and socio-political challenges, Energy & Environmental Science, 15, pp. 1360–1405. DOI:10.1039/D1EE03523A.
  21. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks, Science, 341. DOI:10.1126/science.1230444.
  22. Gargiulo, N., Peluso, A. & Caputo, D. (2020). MOF-Based Adsorbents for Atmospheric Emission Control: A Review, Processes, 8, 613. DOI:10.3390/pr8050613.
  23. Giraldo, L., Rodriguez-Estupiñán, P. & Moreno-Piraján, J. C. (2019). Isosteric Heat: Comparative Study between Clausius–Clapeyron, CSK and Adsorption Calorimetry Methods, Processes, 7, 203. DOI:10.3390/pr7040203.
  24. Haldoupis, E., Borycz, J., Shi, H., Vogiatzis, K. D., Bai, P., Queen, W. L., Gagliardi, L. & Siepmann, J. I. (2015). Ab Initio Derived Force Fields for Predicting CO 2 Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu), The Journal of Physical Chemistry C, 119, pp. 16058–16071. DOI:10.1021/acs.jpcc.5b03700.
  25. Jodłowski, P. J., Kurowski, G., Dymek, K., Jędrzejczyk, R. J., Jeleń, P., Kuterasiński, Ł., Gancarczyk, A., Węgrzynowicz, A., Sawoszczuk, T. & Sitarz, M. (2020). In situ deposition of M(M=Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation - Spectroscopic and microscopic characterization, Microporous and Mesoporous Materials, 303, 110249. DOI:10.1016/j.micromeso.2020.110249.
  26. Jodłowski, P. J., Kurowski, G., Dymek, K., Oszajca, M., Piskorz, W., Hyjek, K., Wach, A., Pajdak, A., Mazur, M., Rainer, D. N., Wierzbicki, D., Jeleń, P. & Sitarz, M. (2023). From crystal phase mixture to pure metal-organic frameworks – Tuning pore and structure properties, Ultrasonics Sonochemistry, 95, 106377. DOI:10.1016/j.ultsonch.2023.106377.
  27. Jodłowski, P. J., Kurowski, G., Kuterasiński, Ł., Sitarz, M., Jeleń, P., Jaśkowska, J., Kołodziej, A., Pajdak, A., Majka, Z. & Boguszewska-Czubara, A. (2021). Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal–Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro, ACS Applied Materials & Interfaces, 13, pp. 312–323. DOI:10.1021/acsami.0c21508.
  28. Jodłowski, P. J., Kurowski, G., Skoczylas, N., Pajdak, A., Kudasik, M., Jędrzejczyk, R. J., Kuterasiński, Ł., Jeleń, P., Sitarz, M., Li, A. & Mazur, M. (2022). Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems, Journal of Cleaner Production, 352, 131638. DOI:10.1016/j.jclepro.2022.131638.
  29. Kong, X.-J. & Li, J.-R. (2021). An Overview of Metal–Organic Frameworks for Green Chemical Engineering, Engineering, 7, pp. 1115–1139. DOI:10.1016/j.eng.2021.07.001.
  30. Krzywanski, J., Grabowska, K., Sosnowski, M., Zylka, A., Kulakowska, A., Czakiert, T., Sztekler, K., Wesolowska, M. & Nowak, W. (2022). Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes, Heat Transfer Engineering, 43, 172–182. DOI:10.1080/01457632.2021.1874174.
  31. Kurzydym, I. & Czekaj, I. (2020). Modelling of porous metal-organic framework (MOF) materials used in catalysis, Technical Transactions, pp. 1–24. DOI:10.37705/TechTrans/e2020012.
  32. Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM, Journal of the American Chemical Society, 40, pp. 1361–1403. DOI:10.1021/ja02242a004.
  33. Lee, Y.-R., Kim, J. & Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: A mini review, Korean Journal of Chemical Engineering, 30, pp. 1667–1680. DOI:10.1007/s11814-013-0140-6.
  34. Li, D., Chen, L., Liu, G., Yuan, Z., Li, B., Zhang, X. & Wei, J. (2021). Porous metal–organic frameworks for methane storage and capture: status and challenges, New Carbon Materials, 36, pp. 468–496. DOI:10.1016/S1872-5805(21)60034-3.
  35. Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S. & Chen, B. (2019). Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006. DOI:10.1016/j.enchem.2019.100006.
  36. Li, M., Zhang, G., Boakye, A., Chai, H., Qu, L. & Zhang, X. (2021). Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications, Frontiers in Bioengineering and Biotechnology, 9. DOI:10.3389/fbioe.2021.797067.
  37. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. (2019). Exploration of porous metal–organic frameworks for gas separation and purification, Coordination Chemistry Reviews, 378, pp. 87–103. DOI:10.1016/j.ccr.2017.09.027.
  38. Madden, D. G., O’Nolan, D., Chen, K.-J., Hua, C., Kumar, A., Pham, T., Forrest, K. A., Space, B., Perry, J. J., Khraisheh, M. & Zaworotko, M. J. (2019). Highly selective CO2 removal for one-step liquefied natural gas processing by physisorbents, Chemical Communications, 55, pp. 3219–3222. DOI:10.1039/C9CC00626E.
  39. Mahdipoor, H. R., Halladj, R., Ganji Babakhani, E., Amjad-Iranagh, S. & Sadeghzadeh Ahari, J. (2021). Synthesis, characterization, and CO 2 adsorption properties of metal organic framework Fe-BDC, RSC Advances, 11, pp. 5192–5203. DOI:10.1039/D0RA09292D.
  40. Mangal, S., Priya, S. S., Lewis, N. L. & Jonnalagadda, S. (2018). Synthesis and characterization of metal organic framework-based photocatalyst and membrane for carbon dioxide conversion, Materials Today: Proceedings, 5, pp. 16378–16389. DOI:10.1016/j.matpr.2018.05.134.
  41. Mason, J. A., Veenstra, M. & Long, J. R. (2014). Evaluating metal–organic frameworks for natural gas storage, Chem. Sci., 5, pp. 32–51. DOI:10.1039/C3SC52633J.
  42. Myers, A. L. (2002). Thermodynamics of adsorption in porous materials, AIChE Journal, 48, pp. 145–160. DOI:10.1002/aic.690480115.
  43. Naghdi, S., Shahrestani, M. M., Zendehbad, M., Djahaniani, H., Kazemian, H. & Eder, D. (2023). Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs), Journal of Hazardous Materials, 442, 130127. DOI:10.1016/j.jhazmat.2022.130127.
  44. Neimark, A. V., Ravikovitch, P. I., Grün, M., Schüth, F. & Unger, K. K. (1998). Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption, Journal of Colloid and Interface Science, 207, pp. 159–169. DOI:10.1006/jcis.1998.5748.
  45. Nuhnen, A. & Janiak, C. (2020). A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks, MOFs, Dalton Transactions, 49, pp. 10295–10307. DOI:10.1039/D0DT01784A.
  46. Olivier, J. P. (1995). Modeling physical adsorption on porous and nonporous solids using density functional theory, Journal of Porous Materials, 2, pp. 9–17. DOI:10.1007/BF00486565.
  47. Olivier, J. P. (2000). Comparison of the experimental isosteric heat of adsorption of argon on mesoporous silica with density functional theory calculations, Studies in Surface Science and Catalysis, 128, pp. 81–87. DOI:10.1016/S0167-2991(00)80011-7.
  48. Oschatz, M. & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11, pp. 57–70. DOI:10.1039/C7EE02110K.
  49. Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W. & Kudasik, M. (2019). CO2 and CH4 sorption on carbon nanomaterials and coals – Comparative characteristics, Journal of Natural Gas Science and Engineering, 72, 103003. DOI:10.1016/j.jngse.2019.103003.
  50. Park, H. J. & Suh, M. P. (2013). Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions, Chem. Sci., 4, pp. 685–690. DOI:10.1039/C2SC21253F.
  51. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103, pp. 10186–10191. DOI:10.1073/pnas.0602439103.
  52. Qazvini, O. T., Babarao, R. & Telfer, S. G. (2021). Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, Nature Communications, 12, 197. DOI:10.1038/s41467-020-20489-2.
  53. Qian, Q., Asinger, P. A., Lee, M. J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F. M., Wu, A. X., Chi, W. S. & Smith, Z. P. (2020). MOF-Based Membranes for Gas Separations, Chemical Reviews, 120, pp. 8161–8266. DOI:10.1021/acs.chemrev.0c00119.
  54. Rafati Jolodar, A., Abdollahi, M., Fatemi, S. & Mansoubi, H. (2024). Enhancing carbon dioxide separation from natural gas in dynamic adsorption by a new type of bimetallic MOF; MIL-101(Cr-Al), Separation and Purification Technology, 334, 125990. DOI:10.1016/j.seppur.2023.125990.
  55. Rieth, A. J., Wright, A. M. & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture, Nature Reviews Materials, 4, pp. 708–725. DOI:10.1038/s41578-019-0140-1.
  56. Senkovska, I. & Kaskel, S. (2008). High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3, Microporous and Mesoporous Materials, 112, pp. 108–115. DOI:10.1016/j.micromeso.2007.09.016.
  57. Sircar, S., Mohr, R., Ristic, C. & Rao, M. B. (1999). Isosteric Heat of Adsorption: Theory and Experiment, The Journal of Physical Chemistry B, 103, pp. 6539–6546. DOI:10.1021/jp9903817.
  58. Sose, A. T., Cornell, H. D., Gibbons, B. J., Burris, A. A., Morris, A. J. & Deshmukh, S. A. (2021). Modelling drug adsorption in metal–organic frameworks: the role of solvent, RSC Advances, 11, pp. 17064–17071. DOI:10.1039/D1RA01746B.
  59. Strauss, I., Mundstock, A., Treger, M., Lange, K., Hwang, S., Chmelik, C., Rusch, P., Bigall, N. C., Pichler, T., Shiozawa, H. & Caro, J. (2019). Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing, ACS Applied Materials & Interfaces, 11, pp. 14175–14181. DOI:10.1021/acsami.8b22002.
  60. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, pp. 1051–1069. DOI:10.1515/pac-2014-1117.
  61. Tlili, N., Grévillot, G. & Vallières, C. (2009). Carbon dioxide capture and recovery by means of TSA and/or VSA, International Journal of Greenhouse Gas Control, 3, pp. 519–527. DOI:10.1016/j.ijggc.2009.04.005.
  62. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, K. P. & Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory, Chemistry of Materials, 23, pp. 1700–1718. DOI:10.1021/cm1022882.
  63. Valverde, A., G.-Sainz, P., Orive, J., Larrea, E., Reizabal-Para, A., Tovar, G., Copello, G., Lázaro-Martinez, J. M., Rodriguez, B., Gonzalez-Navarrete, B., Quintero, Y., Rosales, M., García, A., Arriortua, M. I. & Fernández de Luis, R. (2021). Chapter Three - Porous, lightweight, metal organic materials: environment sustainability, in: Advanced Lightweight Multifunctional Materials, Costa, P., Costa, C. M., Lanceros-Mendez, S. (Eds.). Woodhead Publishing, pp. 49-129. DOI:10.1016/B978-0-12-818501-8.00012-3.
  64. Wierzbicki, M. (2019). Izosteryczne ciepło sorpcji metanu na wybranych węglach kamiennych, PRZEMYSŁ CHEMICZNY, 1, pp. 139–143. DOI:10.15199/62.2019.4.22.
  65. Xiao, T. & Liu, D. (2019). The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives, Microporous and Mesoporous Materials, 283, pp. 88–103. DOI:10.1016/j.micromeso.2019.03.002.
  66. Xu, B., Zhang, H., Mei, H. & Sun, D. (2020). Recent progress in metal-organic framework-based supercapacitor electrode materials, Coordination Chemistry Reviews, 420, 213438. DOI:10.1016/j.ccr.2020.213438.
  67. Yulia, F., Utami, V. J., Nasruddin, N. & Zulys, A. (2019). Synthesis, Characterizations, and Adsorption Isotherms of CO2 on Chromium Terephthalate (MIL-101) Metal-organic Frameworks (MOFs), International Journal of Technology, 10, 1427. DOI:10.14716/ijtech.v10i7.3706.
  68. Zhou, J., Zeng, C., Ou, H., Yang, Q., Xie, Q., Zeb, A., Lin, X., Ali, Z. & Hu, L. (2021). Metal–organic framework-based materials for full cell systems: a review, Journal of Materials Chemistry C, 9, pp. 11030–11058. DOI:10.1039/D1TC01905H.
  69. Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., de Souza-Santos, M. L., Sztekler, K. & Nowak, W. (2020). Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier, Energies, 13, 5394. DOI:10.3390/en13205394.

Date

16.12.2024

Type

Article

Identifier

DOI: 10.24425/aep.2024.152895

DOI

10.24425/aep.2024.152895

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×