Details
Title
Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biocharJournal title
Archives of Environmental ProtectionYearbook
2024Volume
50Issue
4Authors
Affiliation
Vaiškūnaitė, Rasa : Department of Environmental Protection and Water Engineering,Vilnius Gediminas Technical University, LithuaniaKeywords
wastewater; ; removal of phosphorus; ; biochar of sewage sludge; ; batch adsorption; ; fixed-bed columnadsorptionDivisions of PAS
Nauki TechniczneCoverage
72-81Publisher
Polish Academy of SciencesBibliography
Almanassra, I.W., Mckay, G., Kochkodan, V., Ali Atieh, M. & Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409, 128211. DOI:10.1016/J.CEJ.2020.128211 Deng, L., Shi, Z., Li, B., Yang, L., Luo, L. & Yang, X. (2014). Adsorption of Cr(VI) and phosphate on Mg-Al hydrotalcite supported kaolin Clay prepared by ultrasound-assisted coprecipitation method using batch and fixed-bed systems. Industrial and Engineering Chemistry Research, 53(18), pp. 7746–7757. DOI:10.1021/ie402917s Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I. & Linnanen, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, pp. 221–229. DOI:10.1016/J.WASMAN.2016.01.020 He, L., Chen, Y., Sun, F., Li, Y., Huang, W. & Yang, S. (2022). Controlled release of phosphorus using lanthanum-modified hydrochar synthesized from water treatment sludge: Adsorption behavior and immobilization mechanism. Journal of Water Process Engineering, 50, 103319, pp. 1−14. DOI:10.1016/j.jwpe.2022.103319. Herzel, H., Krüger, O., Hermann, L. & Adam, C. (2016). Sewage sludge ash — A promising secondary phosphorus source for fertilizer production. Science of The Total Environment, 542, pp. 1136–1143, DOI: 10.1016/J.SCITOTENV.2015.08.059 Jamaludin, N., Rashid, S. A. & Tan, T. (2019). Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 109–134. DOI:10.1016/B978-0-12-815757-2.00005-X Januševičius, T., Mažeikienė, A., Danila, V. & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery, 1, pp. 1–10. DOI:10.1007/s13399-021-02295y Jourak, A., Frishfelds, V., Lundström, T. S., Herrmann, I.. & Hedström, A. (2011). Modeling of Phosphate Removal by Filtra P in Fixed-bed Columns, https://www.diva-portal.org/smash/get/diva2:1004231/FULLTEXT01.pdf Jozwiakowska, K. & Marzec M. (2020). Efficiency and reliability of sewage purification in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Archives of Environmental Protection, 46 (3), pp. 30–41. DOI:10.24425/aep.2020.134533 Jung, K. W., Jeong, T. U., Choi, J. W., Ahn, K. H. & Lee, S. H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, pp. 23–32. DOI:10.1016/J.BIORTECH.2017.07.133 Khanmohammadi, Z., Afyuni, M. & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management and Research, 33(3), pp. 275-283. DOI:10.1177/0734242X14565210 Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G. & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, pp. 460–469. DOI:10.1016/J.SCITOTENV.2019.05.400 Liu, J., Huang, Z., Chen, Z., Sun, J., Gao, Y. & Wu, E. (2020). Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water. Journal of Cleaner Production, 257, 120322. DOI:10.1016/J.JCLEPRO.2020.120322 Lv, M.Y., Yu H.X. & Shang, X.Y. (2023). Sludge derived biochar: A review on the influence of synthesis conditions on environmental risk reduction and removal mechanism of wastewater pollutants. Archives of Environmental Protection, 49 (2), pp. 3–15. DOI:10.24425/aep.2023.145892 Ma, Y., Li, P., Yang, L., Wu, L., He, L., Gao, F., Qi, X. & Zhang, Z. (2020). Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. Ecotoxicology and Environmental Safety, 196, 110550. DOI:10.1016/J.ECOENV.2020.110550 Mekonnen, D.T., Alemayehu, E., Lennartz, B., Unuabonah, E. & Taubert, A. (2021). Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials, pp. 14(19), 5466. DOI:10.3390/MA14195466 Mo, J., Li, Q., Sun, X., Zhang, H., Xing, M., Dong, B. & Zhu, H. (2024). Capacity and Mechanisms of Phosphate Adsorption on Lanthanum-Modified Dewatered Sludge-Based Biochar. Water, 16, 418, pp. 1−16. DOI:10.3390/w16030418 Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. & Bui, X.T. (2015). Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study. Science of The Total Environment, 523, pp. 40–49. DOI:10.1016/J.SCITOTENV.2015.03.126 Nobaharan, K., Novair, S.B., Lajayer, B.A. & van Hullebusch, E.D. (2021). Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13(4), pp. 517. DOI:10.3390/W13040517 Rangabhashiyam, S., Lins, P.V. dos S., Oliveira, L. M.T. de M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U. & Meili, L. (2022). Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution, 293, 118581. DOI:10.1016/J.ENVPOL.2021.118581 Wang, Z., Miao, R., Ning, P., He, L. & Guan, Q. (2021). From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. Journal of Colloid and Interface Science, 593, pp. 434–446. DOI:10.1016/J.JCIS.2021.02.118 Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, pp. 537–544. DOI:10.1016/J.BIORTECH.2017.09.136 Yin, Q., Liu, M. & Ren, H. (2019). Biochar is produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 249, 109410. DOI:10.1016/J.JENVMAN.2019.109410 Zhang, D., Zhang, K., Hu, X., He, Q., Yan, J. & Xue, Y. (2021). Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis, and fixed bed filtration. Journal of Hazardous Materials, 408, 124860. DOI:10.1016/J.JHAZMAT.2020.124860 Zhou, K., Barjenbruch, M., Kabbe, C., Inial, G. & Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. Journal of Environmental Sciences, 52, pp. 151–159. DOI:10.1016/J.JES.2016.04.010Date
16.12.2024Type
ArticlesIdentifier
DOI: 10.24425/aep.2024.152897DOI
10.24425/aep.2024.152897Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science