Details

Title

Research progress on acid mine drainage treatment based on CiteSpace analysis

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

4

Authors

Affiliation

Si, Meiyan : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Zhang, Yuntao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Jin, Hai : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Long, Yongliang : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Nie, Tao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Feng, Wei : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Li, Qingsong : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Lin, Yichao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Xu, Xiaoqian : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Wang, Chunhua : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China

Keywords

Acid mine drainage; ; CiteSpace; ; Bibliometry; ; Treatment; ; Research hotspots;

Divisions of PAS

Nauki Techniczne

Coverage

104-115

Publisher

Polish Academy of Sciences

Bibliography


  1. Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering, 36(9), pp. 1389-1400. DOI:10.1007/s11814-019-0302-2
  2. Ali, I., Basheer, A. A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A. & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127: pp. 160-180. DOI:10.1016/j.envint.2019.03.029
  3. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158: pp. 111-121. DOI:10.1016/j.jenvman.2015.04.045
  4. Anekwe, I.M.S. & Isa, Y.M. (2023). Bioremediation of acid mine drainage-Review. Alexandria Engineering Journal, 65, pp. 1047-1075. DOI:10.1016/j.aej.2022.09.053
  5. Aydin, M.I., Yuzer, B., Hasancebi, B. & Selcuk, H. (2019). Application of electrodialysis membrane process to recovery sulfuric acid and wastewater in the chalcopyrite mining industry. Desalination and Water Treatment, 172, pp. 206-211. DOI:10.5004/dwt.2019.25051
  6. Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), pp. 639-662. DOI:10.1016/s0959-6526(03)00075-1
  7. Benassi, J.C., Laus, R., Geremias, R., Lima, P.L., Menezes, C.T.B., Laranjeira, M.C.M., Wilhelm-Filho, D., Fávere, V.T.R. & Pedrosa, C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), pp. 633-640. DOI:10.1007/s00244-005-0187-4
  8. Bogush, A. A. & Voronin, V. G. (2011). Application of a Peat-humic Agent for Treatment of Acid Mine Drainage. Mine Water and the Environment, 30(3), pp. 185-190. DOI:10.1007/s10230-010-0132-2
  9. Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359-377. DOI:10.1002/asi.20317
  10. Chen,G., Ye, Y., Yao, N., Hu, N., Zhang, J. &Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329(20), pp. 1-21. DOI:10.1016/j.jclepro.2021.129666
  11. Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett, N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J., Cooper, A.T., Davey, Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J., Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A. & Thomson, RJ. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487), pp. 216-220. DOI:10.1038/nature13022
  12. He, Y., Lan, Y., Zhang, H. & Ye, S. (2022). Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecological Indicators, 141, pp. 1-15. DOI:10.1016/j.ecolind.2022.109145
  13. Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z. & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, pp. 1240-1260. DOI:10.1016/j.psep.2022.12.083
  14. Johnson, D. B. & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1), pp. 3-14. DOI:10.1016/j.scitotenv.2004.09.002
  15. Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A. & Carolin, F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution 269. DOI:10.1016/j.envpol.2020.116173
  16. Kiiskila, J.D., Li, K., Sarkar, D. & Datta, R. (2020). Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 240, 124961. DOI:10.1016/j.chemosphere.2019.124961
  17. Lazareva, E.V., Myagkaya, I.N., Kirichenko, I.S., Gustaytis, M.A. & Zhmodik, S.M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, pp. 468-483. DOI:10.1016/j.scitotenv.2018.12.467
  18. Xiao, L. (2008). Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources and Water Engineering, 19(2). https://api.semanticscholar.org/CorpusID:113361846
  19. Liu, Y., Xie, X., Wang, S., Hu, S., Wei, L., Wu, Q., Luo, D. & Xiao, T. (2023). Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). Journal of Contaminant Hydrology, 259. DOI:10.1016/j.jconhyd.2023.104254
  20. Lo, S-F., Wang, S-Y., Tsai, M-J. & Lin, L-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), pp. 1397-1406. DOI:10.1016/j.cherd.2011.11.020
  21. Masindi, V., Akinwekomi, V., Maree, J.P. & Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4), pp. 3903-3913. DOI:10.1016/j.jece.2017.07.062
  22. Masindi, V., Foteinis, S. & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421. DOI:10.1016/j.jhazmat.2021.126677
  23. Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J.P., Tekere, M. & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 183, 106740. DOI:10.1016/j.ecoleng.2022.106740
  24. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. & Trumm, D.A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), pp. 961-970. DOI:10.1016/j.watres.2008.11.029
  25. Ming, C. J. M. M. (2006). Research on Sulfidization-Precipitation-High Concentration Pulping Treatment of Copper-Containing Acid Mine Drainage. Metal Mine.
  26. Motsi, T., Rowson, N.A. & Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1-2), pp. 42-48. DOI:10.1016/j.minpro.2009.02.005
  27. Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, pp. 318-336. DOI:10.1016/j.sajce.2022.09.007
  28. Nageshwari, K. & Balasubramanian, P. (2022). Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 357. DOI:10.1016/j.jclepro.2022.131737
  29. Nishimoto, N., Yamamoto, Y., Yamagata, S., Igarashi, T. & Tomiyama, S. (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals 11(9). DOI:10.3390/min11090998
  30. Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. & Lobo-Recio, M.A. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). DOI:10.1016/j.jece.2018.11.032
  31. Ouyang, W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H. & Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637, pp. 208-220. DOI:10.1016/j.scitotenv.2018.04.434
  32. Pagnanelli, F., De Michelis, I., Di Muzio, S., Ferella, F. & Vegliò, F. (2008). Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Journal of Hazardous Materials, 159(2-3), pp. 567-573. DOI:10.1016/j.jhazmat.2008.02.067
  33. Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43(23), pp. 2545-2580. DOI:10.1080/10643389.2012.694328
  34. Prasad, B. & Mortimer, R. J. G. (2011). Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air and Soil Pollution, 218(1-4), pp. 667-679. DOI:10.1007/s11270-010-0676-6
  35. Qin, F., Zhu, Y., Ao, T. & Chen, T. (2021). The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water, 13(2), 174. DOI:10.3390/w13020174
  36. Qureshi, A., Jia, Y., Maurice, C. & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), pp. 17083-17094. DOI:10.1007/s11356-016-6862-3
  37. Rahman, M.L., Wong, Z.J., Sarjadi, M.S., Abdullah, M.H., Heffernan, M.A., Sarkar, M.S. & O'Reilly, E. (2021). Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138(2). DOI: 10.1002/app.49671
  38. Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T. & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. DOI:10.1016/j.cej.2022.136778
  39. Sephton, M.G., Webb, J.A. & McKnight, S. (2019). Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry, 103, pp. 1-14. DOI:10.1016/j.apgeochem.2019.02.005
  40. Si, M., Chen, Y., Li, C., Lin, Y., Huang, J., Zhu, F., Tian, S. & Zhao, Q. (2023). Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics, 11(1), 13. DOI:10.3390/toxics11010011
  41. Sierra-Alvarez, R., Karri, S., Freeman, S. & Field, J.A. (2006). Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 54(2), pp. 179-185. DOI:10.2166/wst.2006.502
  42. Skousen, J.G., Ziemkiewicz, P.F. & McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), pp. 241-249. DOI:10.1016/j.exis.2018.09.008
  43. Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M. & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. DOI:10.1016/j.resconrec.2021.105610
  44. Tabelin, C.B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi, T. (2017). Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Science of the Total Environment, 580, pp. 687-698. DOI:10.1016/j.scitotenv.2016.12.015
  45. Le, T., Fan,R., Yang, S. & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining Metallurgy & Exploration, 38(1), pp. 315-327. DOI:10.1007/s42461-020-00298-3
  46. Tyulenev, M.A., Gvozdkova, T.N., Zhironkin, S.A. & Garina, E.A. (2017). Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotechnical and Geological Engineering, 35(1), pp. 203-212. DOI:10.1007/s10706-016-0098-3
  47. Varvara, S., Popa, M., Bostan, R. &Damian, G. (2013). Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. Journal of Environmental Protection and Ecology, 14(4), pp. 1506-1514.
  48. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. DOI:10.1016/j.chemosphere.2020.126539
  49. Yan, T., Xue, J., Zhou, Z. & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12(18). DOI: 10.3390/su12187810
  50. Yang, M., Lu, C., Quan, X. & Cao, D. (2021). Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review. Acs Omega, 6(45), pp. 30205-30213. DOI:10.1021/acsomega.1c03504
  51. Zhang, W., Yang, J., Sheng, P., Li, X. & Wang, X. (2014). Potential cooperation in renewable energy between China and the United States of America. Energy Policy, 75, pp. 403-409. DOI: 10.1016/j.enpol.2014.09.016
  52. Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D. & Nadagouda, M.N. (2015). PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal, 268, pp. 170-179. DOI:10.1016/j.cej.2015.01.006
  53. Zhao,Y., Fu,Z., Chen, X. & Zhang, G. (2018). Bioremediation process and bioremoval mechanism of heavy metal ions in acidic mine drainage. Chemical Research in Chinese Universities, 34(1), pp. 33-38. DOI:10.1007/s40242-018-7255-6
  54. Zhou, X. & Zhao, G. (2015). Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics, 105(1), pp. 231-248. DOI:10.1007/s11192-015-1659-6

Date

16.12.2024

Type

Article

Identifier

DOI: 10.24425/aep.2024.152900

DOI

10.24425/aep.2024.152900

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×