Details
Title
Research progress on acid mine drainage treatment based on CiteSpace analysisJournal title
Archives of Environmental ProtectionYearbook
2024Volume
50Issue
4Authors
Affiliation
Si, Meiyan : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Zhang, Yuntao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Jin, Hai : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Long, Yongliang : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Nie, Tao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Feng, Wei : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Li, Qingsong : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Lin, Yichao : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Xu, Xiaoqian : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China ; Wang, Chunhua : Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, ChinaKeywords
Acid mine drainage; ; CiteSpace; ; Bibliometry; ; Treatment; ; Research hotspots;Divisions of PAS
Nauki TechniczneCoverage
104-115Publisher
Polish Academy of SciencesBibliography
- Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering, 36(9), pp. 1389-1400. DOI:10.1007/s11814-019-0302-2
- Ali, I., Basheer, A. A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A. & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127: pp. 160-180. DOI:10.1016/j.envint.2019.03.029
- Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158: pp. 111-121. DOI:10.1016/j.jenvman.2015.04.045
- Anekwe, I.M.S. & Isa, Y.M. (2023). Bioremediation of acid mine drainage-Review. Alexandria Engineering Journal, 65, pp. 1047-1075. DOI:10.1016/j.aej.2022.09.053
- Aydin, M.I., Yuzer, B., Hasancebi, B. & Selcuk, H. (2019). Application of electrodialysis membrane process to recovery sulfuric acid and wastewater in the chalcopyrite mining industry. Desalination and Water Treatment, 172, pp. 206-211. DOI:10.5004/dwt.2019.25051
- Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), pp. 639-662. DOI:10.1016/s0959-6526(03)00075-1
- Benassi, J.C., Laus, R., Geremias, R., Lima, P.L., Menezes, C.T.B., Laranjeira, M.C.M., Wilhelm-Filho, D., Fávere, V.T.R. & Pedrosa, C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), pp. 633-640. DOI:10.1007/s00244-005-0187-4
- Bogush, A. A. & Voronin, V. G. (2011). Application of a Peat-humic Agent for Treatment of Acid Mine Drainage. Mine Water and the Environment, 30(3), pp. 185-190. DOI:10.1007/s10230-010-0132-2
- Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359-377. DOI:10.1002/asi.20317
- Chen,G., Ye, Y., Yao, N., Hu, N., Zhang, J. &Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329(20), pp. 1-21. DOI:10.1016/j.jclepro.2021.129666
- Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett, N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J., Cooper, A.T., Davey, Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J., Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A. & Thomson, RJ. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487), pp. 216-220. DOI:10.1038/nature13022
- He, Y., Lan, Y., Zhang, H. & Ye, S. (2022). Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecological Indicators, 141, pp. 1-15. DOI:10.1016/j.ecolind.2022.109145
- Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z. & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, pp. 1240-1260. DOI:10.1016/j.psep.2022.12.083
- Johnson, D. B. & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1), pp. 3-14. DOI:10.1016/j.scitotenv.2004.09.002
- Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A. & Carolin, F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution 269. DOI:10.1016/j.envpol.2020.116173
- Kiiskila, J.D., Li, K., Sarkar, D. & Datta, R. (2020). Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 240, 124961. DOI:10.1016/j.chemosphere.2019.124961
- Lazareva, E.V., Myagkaya, I.N., Kirichenko, I.S., Gustaytis, M.A. & Zhmodik, S.M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, pp. 468-483. DOI:10.1016/j.scitotenv.2018.12.467
- Xiao, L. (2008). Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources and Water Engineering, 19(2). https://api.semanticscholar.org/CorpusID:113361846
- Liu, Y., Xie, X., Wang, S., Hu, S., Wei, L., Wu, Q., Luo, D. & Xiao, T. (2023). Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). Journal of Contaminant Hydrology, 259. DOI:10.1016/j.jconhyd.2023.104254
- Lo, S-F., Wang, S-Y., Tsai, M-J. & Lin, L-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), pp. 1397-1406. DOI:10.1016/j.cherd.2011.11.020
- Masindi, V., Akinwekomi, V., Maree, J.P. & Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4), pp. 3903-3913. DOI:10.1016/j.jece.2017.07.062
- Masindi, V., Foteinis, S. & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421. DOI:10.1016/j.jhazmat.2021.126677
- Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J.P., Tekere, M. & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 183, 106740. DOI:10.1016/j.ecoleng.2022.106740
- McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. & Trumm, D.A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), pp. 961-970. DOI:10.1016/j.watres.2008.11.029
- Ming, C. J. M. M. (2006). Research on Sulfidization-Precipitation-High Concentration Pulping Treatment of Copper-Containing Acid Mine Drainage. Metal Mine.
- Motsi, T., Rowson, N.A. & Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1-2), pp. 42-48. DOI:10.1016/j.minpro.2009.02.005
- Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, pp. 318-336. DOI:10.1016/j.sajce.2022.09.007
- Nageshwari, K. & Balasubramanian, P. (2022). Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 357. DOI:10.1016/j.jclepro.2022.131737
- Nishimoto, N., Yamamoto, Y., Yamagata, S., Igarashi, T. & Tomiyama, S. (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals 11(9). DOI:10.3390/min11090998
- Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. & Lobo-Recio, M.A. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). DOI:10.1016/j.jece.2018.11.032
- Ouyang, W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H. & Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637, pp. 208-220. DOI:10.1016/j.scitotenv.2018.04.434
- Pagnanelli, F., De Michelis, I., Di Muzio, S., Ferella, F. & Vegliò, F. (2008). Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Journal of Hazardous Materials, 159(2-3), pp. 567-573. DOI:10.1016/j.jhazmat.2008.02.067
- Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43(23), pp. 2545-2580. DOI:10.1080/10643389.2012.694328
- Prasad, B. & Mortimer, R. J. G. (2011). Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air and Soil Pollution, 218(1-4), pp. 667-679. DOI:10.1007/s11270-010-0676-6
- Qin, F., Zhu, Y., Ao, T. & Chen, T. (2021). The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water, 13(2), 174. DOI:10.3390/w13020174
- Qureshi, A., Jia, Y., Maurice, C. & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), pp. 17083-17094. DOI:10.1007/s11356-016-6862-3
- Rahman, M.L., Wong, Z.J., Sarjadi, M.S., Abdullah, M.H., Heffernan, M.A., Sarkar, M.S. & O'Reilly, E. (2021). Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138(2). DOI: 10.1002/app.49671
- Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T. & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. DOI:10.1016/j.cej.2022.136778
- Sephton, M.G., Webb, J.A. & McKnight, S. (2019). Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry, 103, pp. 1-14. DOI:10.1016/j.apgeochem.2019.02.005
- Si, M., Chen, Y., Li, C., Lin, Y., Huang, J., Zhu, F., Tian, S. & Zhao, Q. (2023). Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics, 11(1), 13. DOI:10.3390/toxics11010011
- Sierra-Alvarez, R., Karri, S., Freeman, S. & Field, J.A. (2006). Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 54(2), pp. 179-185. DOI:10.2166/wst.2006.502
- Skousen, J.G., Ziemkiewicz, P.F. & McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), pp. 241-249. DOI:10.1016/j.exis.2018.09.008
- Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M. & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. DOI:10.1016/j.resconrec.2021.105610
- Tabelin, C.B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi, T. (2017). Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Science of the Total Environment, 580, pp. 687-698. DOI:10.1016/j.scitotenv.2016.12.015
- Le, T., Fan,R., Yang, S. & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining Metallurgy & Exploration, 38(1), pp. 315-327. DOI:10.1007/s42461-020-00298-3
- Tyulenev, M.A., Gvozdkova, T.N., Zhironkin, S.A. & Garina, E.A. (2017). Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotechnical and Geological Engineering, 35(1), pp. 203-212. DOI:10.1007/s10706-016-0098-3
- Varvara, S., Popa, M., Bostan, R. &Damian, G. (2013). Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. Journal of Environmental Protection and Ecology, 14(4), pp. 1506-1514.
- Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. DOI:10.1016/j.chemosphere.2020.126539
- Yan, T., Xue, J., Zhou, Z. & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12(18). DOI: 10.3390/su12187810
- Yang, M., Lu, C., Quan, X. & Cao, D. (2021). Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review. Acs Omega, 6(45), pp. 30205-30213. DOI:10.1021/acsomega.1c03504
- Zhang, W., Yang, J., Sheng, P., Li, X. & Wang, X. (2014). Potential cooperation in renewable energy between China and the United States of America. Energy Policy, 75, pp. 403-409. DOI: 10.1016/j.enpol.2014.09.016
- Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D. & Nadagouda, M.N. (2015). PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal, 268, pp. 170-179. DOI:10.1016/j.cej.2015.01.006
- Zhao,Y., Fu,Z., Chen, X. & Zhang, G. (2018). Bioremediation process and bioremoval mechanism of heavy metal ions in acidic mine drainage. Chemical Research in Chinese Universities, 34(1), pp. 33-38. DOI:10.1007/s40242-018-7255-6
- Zhou, X. & Zhao, G. (2015). Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics, 105(1), pp. 231-248. DOI:10.1007/s11192-015-1659-6
Date
16.12.2024Type
ArticleIdentifier
DOI: 10.24425/aep.2024.152900DOI
10.24425/aep.2024.152900Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science