Szczegóły Szczegóły PDF BIBTEX RIS Tytuł artykułu Single Vector Hydrophone DOA Estimation: Leveraging Deep Learning with CNN-CBAM Tytuł czasopisma Archives of Acoustics Rocznik 2025 Wolumin vol. 50 Numer No 2 Autorzy Zeng, Fanyu ; Han, Yaning ; Yang, Hongyuan ; Yang, Dapeng ; Zheng, Fan Afiliacje Zeng, Fanyu : Key Laboratory of Geophysical Exploration Equipment, Ministry of Education,College of Instrumentation and Electrical Engineering, Jilin UniversityChangchun, China ; Han, Yaning : Key Laboratory of Geophysical Exploration Equipment, Ministry of Education,College of Instrumentation and Electrical Engineering, Jilin UniversityChangchun, China ; Yang, Hongyuan : Key Laboratory of Geophysical Exploration Equipment, Ministry of Education,College of Instrumentation and Electrical Engineering, Jilin UniversityChangchun, China ; Yang, Dapeng : Key Laboratory of Geophysical Exploration Equipment, Ministry of Education,College of Instrumentation and Electrical Engineering, Jilin UniversityChangchun, China ; Zheng, Fan : Key Laboratory of Geophysical Exploration Equipment, Ministry of Education,College of Instrumentation and Electrical Engineering, Jilin UniversityChangchun, China Słowa kluczowe single vector hydrophone ; direction of arrival (DOA) ; convolutional neural network (CNN) ; convolutionalblock attention module (CBAM) ; noise resistance Wydział PAN Nauki Techniczne Wydawca Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics Data 5.05.2025 Typ Article Identyfikator DOI: 10.24425/aoa.2025.153659 ; ISSN 0137-5075 ; eISSN 2300-262X