Szczegóły

Tytuł artykułu

Analysis of variations in heavy metal levels and soil microorganism counts resulting from shelling incidents in Ukraine

Tytuł czasopisma

Archives of Environmental Protection

Rocznik

2025

Wolumin

51

Numer

1

Autorzy

Afiliacje

Moliszewska, Ewa : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Matik, Kacper : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Ślusarczyk, Aleksandra : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Pawliczek, Dominik : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Hovorukha, Vira : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Tashyrev, Oleksandr : Institute of Environmental Engineering and Biotechnology, University of Opole, Poland ; Bida, Iryna : Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; Havryliuk, Olesia : Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; Hovorukha, Vira : Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; Tashyrev, Oleksandr : Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; Havryliuk, Olesia : Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability,Department of Chemical Engineering, Universitat Politecnica de Catalunya-BarcelonaTech, Terrassa, Spain

Słowa kluczowe

soil ; heavy metals ; soil contamination ; microorganisms ; shelling

Wydział PAN

Nauki Techniczne

Zakres

83-91

Wydawca

Polish Academy of Sciences

Bibliografia

  1. Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A. & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. DOI:10.1016/j.rineng.2020.100181
  2. Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A. & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 17006. DOI:10.1038/s41598-021-94616-4
  3. Albrektienė-Plačakė, R. & Paliulis, D. (2024). Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
  4. Al-Qadri, F. A. & Alsaiar, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the removal of cupper (II). Archives of Environmental Protection, 49(2), pp. 30-39. DOI:10.24425/aep.2023.145894
  5. Bonchkovskyi, O. S., Ostapenko, P. O., Shvaiko, V. M. & Bonchkovskyi, A. S. (2023). Remote sensing as a key tool for assessing war-induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474–487. DOI:10.15421/11234
  6. Broomandi, P., Guney, M., Kim, J. R. & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12(21), 9002. DOI:10.3390/su12219002
  7. Bukhari, D. A. & Rehman, A. (2023). Metal-resistant bacteria as a green bioresource for arsenic remediation in wastewaters. Current Opinion in Green and Sustainable Chemistry, 40, 100785. DOI:10.1016/j.cogsc.2023.100785
  8. Butu, A., Grozea, I., Sarac, I. & Butnariu, M. (2020). Global Scenario of Remediation Techniques to Combat Pesticide Pollution. [In] R. A. Bhat, K. R. Hakeem, & M. A. Dervash (Eds.), Bioremediation and Biotechnology, Vol 2 (pp. 47–72). Springer International Publishing. DOI:10.1007/978-3-030-40333-1_4
  9. Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, pp. 300–306. DOI:10.1016/j.ecoenv.2017.06.048
  10. Havryliuk, O., Bida, I., Hovorukha, V., Bielaieva, Y., Liubinska, A., Gladka, G., Kalinichenko, A., Zaimenko, N., Tashyrev, O. & Dziuba, O. (2024). Application of Granular Microbial Preparation and Silicon Dioxide Analcime for Bioremediation of Ecocide Areas. Sustainability, 16(3), 1097. DOI:10.3390/su16031097
  11. Havryliuk, О. А., Bida, І. О., Hovorukha, V. М., Danko, Y. P., Gladka, G. V., Sachko, А. V., Yastremska, L. S., Tashyrev, О. B. & Muchnyk, P. V. (2020). Metal-resistant microorganisms of tap water: theoretical justification and biotechnological application. Problems of Environmental Biotechnology. 1-2. DOI:10.18372/2306-6407.1-2.16059
  12. Hemmat-Jou, M. H., Safari-Sinegani, A. A., Mirzaie-Asl, A. & Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology, 27(9), pp. 1281–1291. DOI:10.1007/s10646-018-1981-x
  13. Huminilovych, R., Stadnik, V., Sozanskyi, M., Pidlisnyuk, V. & Ivaniuk, A. (2023). Monitoring of Soils Contaminated by Military Activities During Phytoremediation Using Miscanthus X Giganteus. International Conference of Young Professionals «GeoTerrace-2023», 1–5. DOI:10.3997/2214-4609.2023510113
  14. Hungate, R. E. (1969). Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes. [In] Methods in Microbiology, 3, pp. 117–132. Elsevier. DOI:10.1016/S0580-9517(08)70503-8
  15. Khan, S., Naushad, Mu., Lima, E. C., Zhang, S., Shaheen, S. M. & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 417, 126039. DOI:10.1016/j.jhazmat.2021.126039
  16. Kholoshyn, I. V., Syvyj, M. J., Mantulenko, S. V., Shevchenko, O. L., Sherick, D. & Mantulenko, K. M. (2023). Assessment of military destruction in Ukraine and its consequences using remote sensing. IOP Conference Series: Earth and Environmental Science, 1254, 1, 012132. DOI:10.1088/1755-1315/1254/1/012132
  17. Lindh, P. & Lemenkova, P. (2022). Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi–Mineral Resources Management, 38, 2, pp. 147-168. DOI:10.24425/gsm.2022.141662
  18. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics. Archives of Environmental Protection, 47, 3, pp.28-36. DOI:10.24425/aep.2021.138461
  19. Margaryan, A. (2021). Diversity and Application of Heavy-Metal Resistant Microbes. [In] Singh, R.P., Manchanda, G., Bhattacharjee, K. & Panosyan, H. (Eds.), Microbes in Microbial Communities, pp. 153–174) Springer Singapore. DOI:10.1007/978-981-16-5617-0_7
  20. Melnyk, O., Shevchenko, O., Kuzmin, O. & Niemirich, O. (2023). Risks of toxic environmental pollution from military operations. Food security: modern challenges and mechanisms to ensure, 25. DOI:10.5281/zenodo.7859027
  21. Mitryasova, O., Smyrnov, V., Koszelnik, P., Salamon, I., Smyrnova, S. & Mats, A. (2024). Geochemical Anomalies of the Heavy Metals in the Industrial and Urban Agglomeration Soils. Ecological Engineering & Environmental Technology, 25, 3, pp. 165–177. DOI:10.12912/27197050/177838
  22. Parakhnenko, V. Н., Zadorozhna, О. М., Liakhovska, N. O. & Blahopoluchna, A. H. (2023). Environmental assessment of chemical pollution of soils as a result of the war. Taurian Scientific Herald, 131, pp. 367–373. DOI:10.32782/2226-0099.2023.131.46
  23. Petrushka, K., Malovanyy, M. S., Skrzypczak, D., Chojnacka, K. & Warchoł, J. (2024a). Risks of Soil Pollution with Toxic Elements During Military Actions in Lviv. Journal of Ecological Engineering, 25, 1, pp. 195–208. DOI:10.12911/22998993/175136
  24. Saleh, T. A., Mustaqeem, M. & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. DOI:10.1016/j.enmm.2021.100617
  25. Saran, A., Imperato, V., Fernandez, L., Gkorezis, P., d’Haen, J., Merini, L. J., Vangronsveld, J. & Thijs, S. (2020). Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. Agronomy, 10, 2, 204. DOI:10.3390/agronomy10020204
  26. Shahini, E., Shebanina, O., Kormyshkin, I., Drobitko, A. & Chernyavskaya, N. (2024). Environmental consequences for the world of Russia’s war against Ukraine. International Journal of Environmental Studies, 81, 1, pp. 463–474. DOI:10.1080/00207233.2024.2302745
  27. Shebanina, O., Kormyshkin, I., Bondar, A., Bulba, I. & Ualkhanov, B. (2024). Ukrainian soil pollution before and after the Russian invasion. International Journal of Environmental Studies, 81, 1, pp. 208–215. DOI:10.1080/00207233.2023.2245288
  28. Shekhunova, S. B., Stadnichenko, S. M. & Siumar, N. P. (2022). The Issue of Assessing Environmental Risks and Economic Losses of Ukraine’s Subsoil as a Result of Russian Military Aggression Against Ukraine. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. DOI:10.3997/2214-4609.2022580249
  29. Tauqeer, H. M., Karczewska, A., Lewińska, K., Fatima, M., Khan, S. A., Farhad, M., Turan, V., Ramzani, P. M. A. & Iqbal, M. (2021). Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. [In] Handbook of Bioremediation (pp. 569–590). Elsevier. DOI:10.1016/B978-0-12-819382-2.00036-3
  30. Tytykalo, R., Pavlovska, N. & Andriiets, M. (2022). Economic and administrative methods of restoration by local governments of the environment of Ukraine destroyed as a result of military operations. Baltic Journal of Economic Studies, 8, 5, pp. 184–190. DOI:10.30525/2256-0742/2022-8-5-184-190

Typ

Article

Identyfikator

DOI: 10.24425/aep.2025.153752 ; ISSN 2083-4772 ; eISSN 2083-4810

DOI

10.24425/aep.2025.153752

Indeksowanie w bazach

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×