Details
Title
Thermodynamic Analysis and Impact of Quenching on Microstructure & Mechanical Properties of High Silicon Ductile IronJournal title
Archives of Foundry EngineeringYearbook
2025Volume
Accepted articlesAuthors
Affiliation
Joseph, B. David : Foundry Institute, RWTH Aachen, Germany ; Pustal, B. : Foundry Institute, RWTH Aachen, Germany ; Weirich, T. : Central Facility for Electron Microscopy, RWTH Aachen, Germany ; Bührig-Polaczek, A. : Foundry Institute, RWTH Aachen, GermanyKeywords
Ductile iron ; Silicon superstructures ; Thermodynamics ; Quenching ; Impact energyDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Björkegren, L.E. (1994). Ferritic ductile iron with higher silicon content. Secondary Ferritic ductile iron with higher silicon content. Swedish Foundry Association (941028).
- Alhussein, A., Risbet, M. & Favergeon, J. (2014). Evolution of ferritic iron resistance through silicon content in secondary evolution of ferritic iron resistance through silicon content.
- White, W.H., Rice, L.P. & Elsea, A.R. (1951). Influence of silicon content on mechnical and high-temprature properties of nodular cast iron. Secondary Influence of Silicon Content on Mechnical and High-Temprature Properties of Nodular Cast Iron. AFS Transactions. 337-345.
- Riebisch, M., Pustal, B. & Bührig-Polaczek, A. (2020). Impact of carbide-promoting elements on the mechanical properties of solid-solutions strengthened ductile iron. International Journal of Metalcasting. 14(2), 365-374. https://doi.org/10.1007/s40962-019-00358-5.
- Deutsches Institut für Normung e.V. (2012). DIN EN 1563: Gießereiwesen - Gusseisen mit Kugelgraphit. Deutsche Fassung EN 1563:2011.
- de la Torre, U., Loizaga, A., Lacaze, J. & Sertucha, J. (2014). As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties. Materials Science and Technology. 30(12), 1425-1431. https://doi.org/10.1179/1743284713Y.00000004.
- Stets, W., Löblich, H., Gassner, G. & Schumacher, P. (2014). Solution strengthened ferritic ductile cast iron properties, production and application. International Journal of Metalcasting. 8, 35-40. https://doi.org/10.1007/BF03355580.
- David Joseph, B., Alkhozaae, H., Pustal, B. & Bührig-Polaczek, A. (2023). Impact of quenching and aluminium on si-segregation and B2 superstructure formation in solid solution strengthened ferritic ductile cast iron. International Journal of Metalcasting. 1-11. https://doi.org/10.1007/s40962-023-01238-9.
- Weiß, P., Tekavčič, A. & Bührig-Polaczek, A. (2018). Mechanistic approach to new design concepts for high silicon ductile iron. Materials Science and Engineering A. 713, 67-74. https://doi.org/10.1016/j.msea.2017.12.012.
- Hasse, S. (1996). Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender in Secondary Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender. Fachverlag Schiele & Schoen.
- Retrieved June 10, 2024, from https://micress.rwth-aachen.de/
- Retrieved June 10, 2024, from https://thermocalc.com/
- Andersson, J. O., Helander, T., Höglund, L., Shi, P., & Sundman, B. (2002). Thermo-Calc and DICTRA, computational tools for material science. 26(2), 273-312. https://doi.org/10.1016/S0364-5916(02)00037-8.
- Deutsches Institut für Normung e.V.(2022). DIN 50125: Prüfung metallischer Werkstoffe – Zugproben.
- Beckert, M. & Klemm, H. (1962). Handbuch der metallographischen Ätzverfahren.
- Deutsches Institut für Normung e.V. (2010). DIN EN ISO 945-1: Mikrostruktur von Gusseisen – Teil 1: Graphitklassifizierung durch visuelle Auswertung.