Details

Title

Thermodynamic Analysis and Impact of Quenching on Microstructure & Mechanical Properties of High Silicon Ductile Iron

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Joseph, B. David : Foundry Institute, RWTH Aachen, Germany ; Pustal, B. : Foundry Institute, RWTH Aachen, Germany ; Weirich, T. : Central Facility for Electron Microscopy, RWTH Aachen, Germany ; Bührig-Polaczek, A. : Foundry Institute, RWTH Aachen, Germany

Keywords

Ductile iron ; Silicon superstructures ; Thermodynamics ; Quenching ; Impact energy

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Björkegren, L.E. (1994). Ferritic ductile iron with higher silicon content. Secondary Ferritic ductile iron with higher silicon content. Swedish Foundry Association (941028).
  2. Alhussein, A., Risbet, M. & Favergeon, J. (2014). Evolution of ferritic iron resistance through silicon content in secondary evolution of ferritic iron resistance through silicon content.
  3. White, W.H., Rice, L.P. & Elsea, A.R. (1951). Influence of silicon content on mechnical and high-temprature properties of nodular cast iron. Secondary Influence of Silicon Content on Mechnical and High-Temprature Properties of Nodular Cast Iron. AFS Transactions. 337-345.
  4. Riebisch, M., Pustal, B. & Bührig-Polaczek, A. (2020). Impact of carbide-promoting elements on the mechanical properties of solid-solutions strengthened ductile iron. International Journal of Metalcasting. 14(2), 365-374. https://doi.org/10.1007/s40962-019-00358-5.
  5. Deutsches Institut für Normung e.V. (2012). DIN EN 1563: Gießereiwesen - Gusseisen mit Kugelgraphit. Deutsche Fassung EN 1563:2011.
  6. de la Torre, U., Loizaga, A., Lacaze, J. & Sertucha, J. (2014). As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties. Materials Science and Technology. 30(12), 1425-1431. https://doi.org/10.1179/1743284713Y.00000004.
  7. Stets, W., Löblich, H., Gassner, G. & Schumacher, P. (2014). Solution strengthened ferritic ductile cast iron properties, production and application. International Journal of Metalcasting. 8, 35-40. https://doi.org/10.1007/BF03355580.
  8. David Joseph, B., Alkhozaae, H., Pustal, B. & Bührig-Polaczek, A. (2023). Impact of quenching and aluminium on si-segregation and B2 superstructure formation in solid solution strengthened ferritic ductile cast iron. International Journal of Metalcasting. 1-11. https://doi.org/10.1007/s40962-023-01238-9.
  9. Weiß, P., Tekavčič, A. & Bührig-Polaczek, A. (2018). Mechanistic approach to new design concepts for high silicon ductile iron. Materials Science and Engineering A. 713, 67-74. https://doi.org/10.1016/j.msea.2017.12.012.
  10. Hasse, S. (1996). Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender in Secondary Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender. Fachverlag Schiele & Schoen.
  11. Retrieved June 10, 2024, from https://micress.rwth-aachen.de/
  12. Retrieved June 10, 2024, from https://thermocalc.com/
  13. Andersson, J. O., Helander, T., Höglund, L., Shi, P., & Sundman, B. (2002). Thermo-Calc and DICTRA, computational tools for material science. 26(2), 273-312. https://doi.org/10.1016/S0364-5916(02)00037-8.
  14. Deutsches Institut für Normung e.V.(2022). DIN 50125: Prüfung metallischer Werkstoffe – Zugproben.
  15. Beckert, M. & Klemm, H. (1962). Handbuch der metallographischen Ätzverfahren.
  16. Deutsches Institut für Normung e.V. (2010). DIN EN ISO 945-1: Mikrostruktur von Gusseisen – Teil 1: Graphitklassifizierung durch visuelle Auswertung.

Date

17.03.2025

Publication type

Article

Identifier

DOI: 10.24425/afe.2025.153773
×