Details

Title

Comparative Study on the Effect of Different Gas Types in Baking Regenerative Ladle

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

He, Jiayang : School of Civil Engineering, University of Science and Technology Liaoning, China ; Liu, Guangqiang : School of Civil Engineering, University of Science and Technology Liaoning, China ; Liu, Yuanxin : School of Civil Engineering, University of Science and Technology Liaoning, China ; Cao, Zhizhong : Technology Research Center of Bengang, Bengang Group, China ; Liu, Junyan : Technology Research Center of Bengang, Bengang Group, China

Keywords

Ladle baking ; Regenerative combustion ; Gas type ; Baking efficiency

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Zhang, H., Zhou, P. & Yuan, F. (2021). Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel. Energy. 214, 118896, 1-11. https://www.sciencedirect.com/science/article/pii/S036054422032003X
  2. Suzukawa, Y., Sugiyama, S., Hino, Y., Isioka, M. & Mori, I. (1997). Heat transfer improvement and NOx reduction by highly preheated air combustion. Energy Conversion and Management. 38(10-13), 1061-1071.https://doi.org/10.1016/S0196-8904(96)00136-7
  3. Yilmaz, E., Ichiyanagi, M., Zheng, Q., Guo, B., Aratake, N., Kodaka, M., Hikaru, S., Okada, T. & Suzuki, T. (2023). Investigation of intake air temperature effect on co-combustion characteristics of nh3/gasoline in naturally aspirated high compression ratio engine with sub-chamber. Scientific Reports. 13(1), 11649, 1-12. https://link.springer.com/article/10.1038/s41598-023-38883-
  4. Semagina, N., Tam, R. & Sawada, J. (2022). Kinetics of low‐temperature catalytic combustion of ethylene at wet conditions for postharvest storage applications. AIChE Journal. 68(8), e17718, 1-9. https://doi.org/10.1002/aic.17718
  5. Weber, R., Gupta, A.K. & Mochida, S. (2020). High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects. Applied Energy. 278, 115551, 1-28.https://www.sciencedirect.com/science/article/pii/S0306261920310631
  6. Kawai, K., Yoshikawa, K., Kobayashi, H., Tsai, J.S., Matsuo, M. & Katsushima, H. (2002). High temperature air combustion boiler for low BTU gas. Energy Conversion and Management. 43(9-12), 1563-1570. https://doi.org/10.1016/S0196-8904(02)00036-5
  7. Jia, L. & Li, J. (2004). The experimental study on regenerative heat transfer in high temperature air combustion. Journal of Thermal Science. 13, 366-370. https://doi.org/10.1007/s11630-004-0056-x
  8. Sánchez, M., Cadavid, F. & Amell, A. (2013). Experimental evaluation of a 20 kW oxygen enhanced self-regenerative burner operated in flameless combustion mode. Applied 111, 240-246. https://www.sciencedirect.com/science/article/pii/S030626191300398X
  9. Weihong, Y. & Blasiak, W. (2004). Combustion performance and numerical simulation of a high-temperature air–LPG flame on a regenerative burner. Scandinavian Journal of Metallurgy. 33(2), 113-120. https://doi.org/10.1111/j.1600-0692.2004.00675.x
  10. Khoshhal, A., Rahimi, M. & Alsairafi, A.A. (2011). Diluted air combustion and NOx emission in a HiTAC furnace. Numerical Heat Transfer, Part A: Applications. 59(8), 633-651. https://doi.org/10.1080/10407782.2011.561117
  11. Haworth, D.C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science. 36(2), 168-259. https://doi.org/10.1016/j.pecs.2009.09.003
  12. Ma, L., Naud, B. & Roekaerts, D. (2016). Transported PDF modeling of ethanol spray in hot-diluted coflow flame. Flow, Turbulence and Combustion. 96, 469-502. https://doi.org/10.1007/s10494-015-9623-3
  13. Fanjie, Y., Hui, Z., Haibin X., Azhar, M.U., Yong, Z. & Fudong, C. (2022). Numerical simulation method for the process of rockburst. Engineering Geology. 306, 106760. https://doi.org/10.1016/j.enggeo.2022.106760
  14. Hosseini, A.A., Ghodrat, M., Moghiman, M. & Pourhoseini, S.H. (2020). Numerical study of inlet air swirl intensity effect of a Methane-Air Diffusion Flame on its combustion characteristics. Case Studies in Thermal Engineering. 18, 100610, 1-10. https://doi.org/10.1016/j.csite.2020.100610
  15. Zhang, R.C., Bai, N.J., Fan, W.J., Yan, W.H., Hao, F. & Yin, C.M. (2018). Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines. Energy. 165, 979-996. https://doi.org/10.1016/j.energy.2018.09.121
  16. Hou, A., Jin, S., Harmuth, H. & Gruber, D. (2018). A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM. 70, 2449-2456. https://link.springer.com/article/10.1007/s11837-018-3063-1
  17. Shuai W., Zhi, W., Dou, R., Yongli, X., Yunze, G. & Liu, X. (2022). Numerical Study on the Mixing Process of Hot Desulfurization Slag and Converter Steel Slag. Case Studies in Thermal Engineering. 40, 102561, 1-13. https://doi.org/10.1016/j.csite.2022.102561
  18. Dai, Y., Li, J., Yan, W. & Shi, C. (2020). Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process. Journal of Materials Research and Technology. 9(3), 4292-4308. https://doi.org/10.1016/j.jmrt.2020.02.055
  19. Fang, L., Su, F., Kang, Z. & Zhu, H. (2023). Numerical simulation on heat transfer of multi-layer ladle in empty and heavy condition. Frontiers in Heat and Mass Transfer (FHMT). 20, 14, 1-9. DOI: 10.5098/hmt.20.14

Date

17.03.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153776
×