Details

Title

Corrosion Behavior of (Copper/Nickel) step-wise Functionally Graded Materials

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Abdulamer, Dheya : University of Technology- Iraq ; Ghafil, Noor Sh : Ministry of Education, Iraq ; Albusalih, Dhuha : University of Al-Qadisiyah Iraq -AL-Diwaniyah ; Atiyah, Alaa Abdulhasan : University of Technology- Iraq

Keywords

Corrosion behavior ; Functionally Grade Materials ; Processing parameters ; Potentiostat measurements ; Corrosion parameters

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. El-Galy, I.M., Saleh, B.I. & Ahmed, M.H, (2019). Functionally graded materials classifications and development trends from industrial point of view. SN Applied Sciences. 1, 1378, 1-23. https://doi.org/10.1007/s42452-019-1413-4.
  2. Sahu, S. K., Chugh, R., Sahu, D., Khatri, R., Nagpal, S. & Shekhar, S. (2024). Innovations in functionally graded materials for advanced engineering applications. Tuijin Jishu/Journal of Propulsion Technology. 45(1), 2763 – 2775.
  3. Mohammadi, M., Rajabi, M., & Ghadiri, M. (2021). Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications. Processing and Application of Ceramics. 15(4), 319-343. https://doi.org/10.2298/PAC2104319M.
  4. Mahinzare, M., Ranjbarpur, H. & Ghadir, M. (2018). Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mechanical Systems and Signal Processing. 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.
  5. Alkunte S., Fidan I., Naikwadi V., Gudavasov S., Ali M.A., Mahmudov M., Hasanov S. & Cheepu M. (2024). Advancements and challenges in additively manufactured functionally graded materials: a comprehensive review. Journal of Manufacturing and Materials Processing. 8(1), 23- 1-37. https://doi.org/10.3390/jmmp8010023.
  6. Ge, C-C., Li, J-T., Zhou, Z-J., Cao, W-B., Shen, W-P., Wang, M-X., Zhang, N-M., Liu, X. & Xu, Z-Y. (2000). Development of functionally graded plasma-facing materials. Journal of Nuclear Materials. 283-287(2), 1116-1120. https://doi.org/10.1016/S0022-3115(00)00318-4.
  7. Ling, Y., Ge, C., Li, J. & Huo, C. (2000). Fabrication of Sic/Cu functionally gradient material by graded sintering. Functionally graded materials 2000. 114, 333-340.
  8. Ge C.C., Wu A.H., Ling Y.H., Cao W.B., Li J.T. & Shen W.P. (2002). New progress of ceramic-based functionally graded plasma-facing materials in China. Key Engineering Materials. 224-226, 459-464. https://doi.org/10.4028/www.scientific.net/KEM.224-226.459.
  9. Ling, Y-H., Li, J-T., Ge, C-C. & Bai, X-D. (2002). Fabrication and evaluation of SiC/Cu functionally graded material used for plasma facing components in a fusion reactor. Journal of Nuclear Materials. 303(2-3), 188-195. https://doi.org/10.1016/S0022-3115(02)00801-2.
  10. da Costa, F. A., da Silva, A. G. P., & Gomes, U. U. (2003). The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technology. 134(1-2), 123-132. https://doi.org/10.1016/S0032-5910(03)00123-2.
  11. Ozkal, B., Upadhyaya, A., Ovecoglu, M. L. & German, R. M. (2004). Realtime sintering observations in W-Cu system: accelerated rearrangement densification via copper coated tungsten powders approach. Euro PM Sintering. 1-7.
  12. Jankovic´ Ilic, D., Fiscina, J., Gonzalez-Oliver, C.J.R. & Mucklich, F. (2005). Properties of Cu-W functionally graded materials produced by segregation and infiltration. In Functionally Graded Materials, proceedings of the 8th international symposium on multifunctional and functional graded materials. Materials Science Forum, Vol. 492-493, (pp. 123-128). Belgium.
  13. Zhou, Z. J., Du, J., Song, S. X., Zhong, Z. H., & Ge, C. C. (2007). Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. Journal of Alloys and Compounds. 428(1-2), 146-150. https://doi.org/10.1016/j.jallcom.2006.03.073.
  14. Chong, F.L., Chen, J.L., Zhou, Z.J. & Li, J.G. (2008). Fabrication and plasma exposure of fine-grained tungsten / copper functionally graded materials in the HT-7 tokamak. Fusion Science and Technology. 53(3), 854-859, https://doi.org/10.13182/FST08-A1740.
  15. Stephane Alexis Jacques Forsik, (2009). Mechanical properties of materials for fusion power plants. Ph.D. Thesis, Darwin College, Cambridge, Germany.
  16. Güler, O., Varol, T., Alver, Ü. & Biyik, S. (2021). The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating. Advanced Powder Technology. 32(8), 2873-2890. https://doi.org/10.1016/j.apt.2021.05.053.
  17. Sohail, M.G., Laurens, S., Deby, F., Balayssac, J.P. & Nuaimi, N.A. (2021). Electrochemical corrosion parameters for active and passive reinforcing steel in carbonated and sound concrete. Materials and Corrosion. 72(12), 1854-1871. https://doi.org/10.1002/maco.202112569.
  18. Schultze, J.W. & Lohrengel, M.M. (2000). Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochimica Acta. 45(15-16), 2499-2513. https://doi.org/10.1016/S0013-4686(00)00347-9.
  19. Traldi, S.M., Rossi, J.L. & Costa, I. (2001). Corrosion of spray formed Al-Si-Cu alloys in ethanol automobile fuel. Key Engineering Materials. 189-191, 352-357. https://doi.org/10.4028/www.scientific.net/KEM.189-191.352.
  20. Traldi, S.M, Rossi, J.L. & Costa, I. (2003). An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments. Revista de Metalurgia Supplementos. 86-90.
  21. Stern, M. (1958). Method for determining corrosion rates from linear polarization data. Corrosion. 14(9), 60-64. https://doi.org/10.5006/0010-9312-14.9.60.
  22. Stern, M. & Geary, A.L. (1957). Electrochemical Polarization I: A Theoretical Analysis of the Slope of Polarization Curves. Journal of the Electrochemical Society. 104(1), 59-63. DOI: 10.1149/1.2428496.

 

 

 

Date

17.03.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153777
×