Details
Title
3D Phase-field Simulations of Spheroidal Cast Irons and Evaluation of Homogenized Elastic Mechanical PropertiesJournal title
Archives of Foundry EngineeringYearbook
2025Volume
Accepted articlesAuthors
Affiliation
Nellissery Rajan, R. : Access e.V, Germany ; Eiken, J. : Access e.V, GermanyKeywords
Phase-field ; Simulation ; Microstructure ; Spheroidal cast iron ; Elastic mechanical propertiesDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Stefanescu, D.M. (2018). A history of cast iron. In George E. Totten (Eds.), ASM Handbook (Vol. 1A, pp. 3–11). ASM International.
- Lacaze, J., Sertucha, J., Castro-Román, M. J. (2021). A contemporary monograph on silicon cast irons microstructure-From atom scale to casting (online).
- Liu, J. H., Yan, J. S., Zhao, X. B., Fu, B. G., Xue, H. T., Zhang, G. X., & Yang, P. H. (2020). Precipitation and evolution of nodular graphite during solidification process of ductile iron. China Foundry, 17(4), 260-271. DOI:10.1007/s41230-020-0042-2.
- Andriollo, T. & Hattel, J. (2016). On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations. Mechanics of Materials. 96, 138-150. DOI: 10.1016/j.mechmat.2016.02.007.
- Tourret, D., Liu, H. & Lorca, J. (2022). Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Progress in Materials Science. 123, 100810, 1-19. https://doi.org/10.1016/j.pmatsci.2021.100810.
- Chen, L.Q. & Moelans, N. (2024). Phase-field method of materials microstructures and properties. MRS Bulletin. 49(6), 551-555. https://doi.org/10.1557/s43577-024-00724-7.
- Steinbach, I., Uddagiri, M., Salama, H., Ali, M.A. & Shchyglo, O. (2024). Highly complex materials processes as understood by phase-field simulations: Additive manufacturing, bainitic transformation in steel and high-temperature creep of superalloys. MRS Bulletin. 49, 583-593. DOI:10.1557/s43577-024-00703-y.
- Carré, A., Böttger, B. & Apel, M. (2013). Implementation of an antitrapping current for a multicomponent multiphase-field ansatz. Journal of Crystal Growth. 380, 5-13. DOI: 10.1016/j.jcrysgro.2013.05.032.
- Karma, A. (2001). Phase-field formulation for quantitative modeling of alloy solidification. Physical Review Letters. 87(11), 115701, 1-4. DOI:10.1103/PhysRevLett.87.115701.
- Eiken, J. (2012). The finite phase-field method - A numerical diffuse interface approach for microstructure simulation with minimized discretization error. Materials Research Society Symposium Proceedings. 1369, 62-68. Materials Research Society. DOI:10.1557/opl.2012.510.
- Eiken, J., Böttger, B. & Steinbach, I. (2006). Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 73(6), 066122, 1-9. DOI:10.1103/PhysRevE.73.066122.
- Eiken, J. (2009). A Phase-Field Model for Technical Alloy Solidification. Shaker Verlag.
- Fries, S.G., Boettger, B., Eiken, J. & Steinbach, I. (2009). Upgrading CALPHAD to microstructure simulation: the phase-field method. International Journal of Materials Research. 100(2), 128-134. DOI: 10.3139/146.110013.
- Deepu, M.J. & Phanikumar, G. (2020). ICME Framework for Simulation of Microstructure and Property Evolution During Gas Metal Arc Welding in DP980 Steel. Integrating Materials and Manufacturing Innovation. 9(3), 228-239. DOI:10.1007/s40192-020-00182-4.
- Nomoto, S., Oba, M., Mori, K. & Yamanaka, A. (2017). Microstructure-based multiscale analysis of hot rolling of duplex stainless steel using various simulation software. Integrating Materials and Manufacturing Innovation. 6(1), 69-82. DOI:10.1007/s40192-017-0083-6.
- Lesoult, G., Castro, M. & Lacaze, J. (1998). Solidification of spheroidal graphite cast irons—I. Physical modelling. Acta materialia. 46(3), 983-995. https://doi.org/10.1016/S1359-6454(97)00281-4.
- Lacaze, J., Castro, M., & Lesoult, G. (1998). Solidification of spheroidal graphite cast irons—II. Numerical simulation. Acta materialia. 46(3), 997-1010. https://doi.org/10.1016/S1359-6454(97)00282-6.
- Eiken, J. & Böttger, B. (2018). A multi-phase-field Approach for Solidification with Non-negligible Volumetric Expansion—Application to Graphite Growth in Nodular Cast Iron. Transactions of the Indian Institute of Metals. 71(11), 2725-2729. DOI:10.1007/s12666-018-1427-4.
- (2024). Multicomponent multi-phase-field software version 7.250. Retrieved February 26, 2024, from https://micress.rwth-aachen.de/.
- Eiken, J. (2020). Calphad-based phase-field study of the interplay between spheroidal graphite growth and chemical segregation in ductile cast iron. In IOP Conference Series: Materials Science and Engineering (Vol. 861, No. 1, p. 012055). Institute of Physics Publishing. DOI:10.1088/1757-899X/861/1/012055.
- Eiken, J., Subasic, E. & Lacaze, J. (2020). 3D phase-field computations of microsegregation in nodular cast iron compared to experimental data and Calphad-based Scheil-prediction. Materialia. 9, 100538, 1-11. DOI: 10.1016/j.mtla.2019.100538.
- Horbach, L., Gebhardt, C., Zhang, J., Joseph, B. D., Bührig-Polaczek, A. & Broeckmann, C. (2024). The effect of silicon microsegregation on the mechanical properties of high silicon alloyed ductile cast iron under monotonous loading. Heliyon. 10(1), e23904, 1-19. DOI: 10.1016/j.heliyon. 2023.e23904.
- Eiken, J. & Lacaze, J. (2017). Microsegregation build-up during solidification of nodular cast iron - Phase-field simulation versus experimental information. Microsegregation build-up during solidification of nodular cast iron-Phase-field simulation versus experimental information. In Proceedings of the 5th Decennial International Conference on Solidification Processing, Old Windsor, UK(pp. 25-28).
- Access e.V. (1996). HOMAT-Docs. Retrieved from https://docs.micress.rwth-aachen.de/homat/.
- Laschet, G. (2002). Homogenization of the thermal properties of transpiration cooled multi-layer plates. Computer Methods in Applied Mechanics and Engineering. 191(41-42), 4535-4554. https://doi.org/10.1016/S0045-7825(02)00319-5.
- Zhou, B., Laschet, G., Eiken, J., Behnken, H. & Apel, M. (2020). Multiscale solidification simulation of Sr-modified Al-Si-Mg alloy in die casting. In IOP Conference Series: Materials Science and Engineering, 22-23 June 2020 (Vol. 861, 1-8). Institute of Physics Publishing. DOI:10.1088/1757-899X/861/1/012034.
- Laschet, G. & Apel, M. (2010). Thermo-elastic homogenization of 3-D steel microstructure simulated by the phase-field method. Steel Research International. 81(8), 637-643. DOI:10.1002/srin.201000077.
- Boccaccini, A.R. (1997). Young’s modulus of cast-iron as a function of volume content, shape and orientation of graphite inclusions. International Journal of Materials Research. 88(1), 23-26. DOI:10.3139/ijmr-1997-0005.
- Fernandino, D.O., Cisilino, A.P. & Boeri, R.E. (2015). Determination of effective elastic properties of ferritic ductile cast iron by computational homogenization, micrographs and microindentation tests. Mechanics of Materials. 83, 110-121. DOI: 10.1016/j.mechmat.2015.01.002.
- Grimvall, G. (1997). Cast iron as a composite: conductivities and elastic properties. Advanced Materials Research. 4-5, 31-46. DOI: 10.4028/www.scientific.net/amr.4-5.31.
- Speich, G.R., Schwoeble, A.J. & Kapadia, B.M. (1980). Elastic moduli of gray and nodular cast iron. Journal of Applied Mechanics. 47(4), 821-826. DOI:10.1115/1.3153797.
- Bührig-Polaczek, A., Broeckmann, C. & Eiken, J. (2023). Experimentally supported modelling of the correlation between metallurgical process control, 3D microstructure development and mechanical properties of pearlitic cast iron with spheroidal graphite. DFG Project 504974025. Aachen.
- Thermo-Calc. (2023). TCFE9, TCS Steel/Fe -Alloys Database, Version 3.0.
- Thermo-Calc. (2023). MOBFE4, TCS Steel/FE Alloys Mobility Database version 4.
- Turnbull, D. (1953). Theory of catalysis of nucleation by surface patches. Acta Metallurgica. 1(1), 1953, 8-14. https://doi.org/10.1016/0001-6160(53)90004-2.
- Nellissery Rajan, R. (2024). Experiment-based 3-D phase field simulations of nucleation and growth of graphite nodules in SGI alloys and evaluation of homogenized mechanical properties. Master-Thesis. RWTH, Aachen.
- Eiken, J., Böttger, B. & Apel, M. (2023). Diffuse modelling of pearlite growth in Calphad-coupled multicomponent multi-phase-field simulations. IOP Conference Series: Materials Science and Engineering. 1281(1), 012051. DOI:10.1088/1757-899x/1281/1/012051.
- Fredriksson, H. & Svensson, I.L. (1984). Computer simulation of the structure formed during solidification of cast iron. MRS Proceedings. 34, 273. DOI: 10.1557/PROC-34-273.
- Lekakh, S.N., Zhang, X., Tucker, W., Lee, H.K., Selly, T. & Schiffbauer, J.D. (2020). Micro-CT quantitative evaluation of graphite nodules in SGI. International Journal of Metalcasting. 14(2), 318-327. DOI:10.1007/s40962-019-00354-9.
- Access e.V. (2024). HOMAT version 6.004.
- Bonora, N., & Ruggiero, A. (2005). Micromechanical modeling of ductile cast iron incorporating damage. Part I: Ferritic ductile cast iron. International Journal of Solids and Structures. 42(5), 1401-1424. DOI: https://doi.org/10.1016/j.ijsolstr.2004.07.025.
- Kosteski, L., Iturrioz, I., Batista, R.G. & Cisilino, A.P. (2011). The truss-like discrete element method in fracture and damage mechanics. Engineering Computations (Swansea, Wales). 28(6), 765-787. DOI:10.1108/02644401111154664.