Details
Title
The Effect of Turbulence Inhibitor Design on the Movement of Liquid Steel in a Tundish - Modelling StudiesJournal title
Archives of Foundry EngineeringYearbook
2025Volume
Accepted articlesAuthors
Affiliation
Merder, T. : Silesian University of Technology, Poland ; Pieprzyca, J. : Silesian University of Technology, Poland ; Strózik, L. : ArcelorMittal Warszawa Sp. z o.o., Poland ; Andrukowicz, A. : ArcelorMittal Warszawa Sp. z o.o., Poland ; Czapka, Z. : Zakłady Magnezytowe "ROPCZYCE" S.A., Poland ; Saternus, M. : Silesian University of Technology, Poland ; Merder, J. : University of Economics in Katowice, PolandKeywords
Steel ; Tundish ; Water models ; Physical modellingDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Kudliński, Z. (2006). Steel casting technologies (Technologie odlewania stali). University Press of the Silesian University of Technology, Gliwice. (in Polish).
- Lis, T. (2009). Metallurgy of high-purity steel (Metalurgia stali o wysokiej czystości). University Press of the Silesian University of Technology, Gliwice. (in Polish).
- Irwing, W.R. (1993). Continuous casting of steel. London: Publishing of the Institute of Materials.
- Louhenkilpi, S. (2024). Continuous casting of steel. In Treatise on process metallurgy vol. 3: Industrial Processes (pp. 373-434). Publishing of the Royal Institute of Technology, Stockholm, Sweden.
- Bulko, B., Priesol, I., Demeter, P., Gašparovic, P., Baricová, D. & Hrubovcáková, M. (2018). Geometric modification of the tundish impact point. Metals. 8(1), 944, 1-11. DOI:10.3390/met8110944.
- Cwudziński, A. (2015). Numerical simulation of the liquid steel alloying process in a one-strand tundish with different addition positions and flow control devices. Metallurgical Research & Technology. 112(3), 308. DOI: 1051/metal/2015016.
- Zhu, M., Peng, S., Jiang, K., Luo, J., Zhong, Y. & Tang, P. (2022) Fluid flow and heat transfer behaviors under non-isothermal conditions in a four-strand tundish. Metals. 12(5), 840, 1-15. DOI: 3390/met12050840.
- Ling, H. & Zhang, L. (2013). Numerical simulation of the growth and removal of inclusions in the molten steel of a two-strand tundish. JOM. 2013. 65(9), 1155-1163. DOI: 1007/s11837-013-0689-x.
- Morales, R.D., Guarneros, J., Chattopadhyay, K., Nájera-Bastida, A. & Rodríguez, J. (2019). Fluid flow control in a billet tundish during steel filling operations. Metals. 9(3), 394, 1-13. DOI:10.3390/met9040394.
- Wang, K., Tie, Z., Cai, S., Wang, H., Tang, H. & Zhang, J. (2023). Flow control to a t-shaped five strand tundish for ist overall enhanced metallurgical effects with an approachable identical product quality. ISIJ International. 63(8), 1351-1359. DOI: 2355/isijinternational.ISIJINT-2023-008.
- Bulko, B., Molnár, M., Demeter, P., Baricová, D., Pribulová, A., Futás, P. (2018). Study of the influence of intermix conditions on steel cleanliness. Metals. 8(10), 852, 1-9. DOI:10.3390/met8100852.
- Merder, T. & Pieprzyca, J. (2011). Numerical modeling of the influence subflux controller of turbulence on steel flow in the tundish. Metalurgija. 50(4), 223-226.
- Morales, R.D., García-Hernández, S., Barreto Sandoval, J., Ceballos-Huerta, A., Ramos, I.C., Gutiérrez, E. (2016). Multiphase flow modeling of slag entrainment during ladle change operation. Metallurgical and Materials Transactions B. 47(4), 2595-2606. DOI:10.1007/s11663-016-0663-4.
- Neumann, S., Asad, A. & Schwarze, R. (2020). Numerical simulation of an industrial-scale prototypical steel melt tundish considering flow control and cleaning strategies. Advanced Engineering Materials. 22(2), 1900658, 1-11. DOI:10.1002/adem.201900658.
- Sheng, D.Y. & Windisch, C. (2022). A simulation-based digital design methodology for studying conjugate heat transfer in tundish. Metals. 12 (1), 62, 1-21. DOI:10.3390/met12010062.
- Qin, X., Cheng, C., Li, Y., Wu, W. & Jin, Y. (2022). Bubble behaviour under a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. Journal of Materials Research and Technology. 21(10), 3195-3206. DOI: 1016/j.jmrt.2022.10.100.
- Yamamoto, T., Suzuki, A., Komarova, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
- Saternus, M., Merder, T. & Warzecha P. (2011). Numerical and physical modelling of aluminium barbotage process. Solid State Phenomena. 176, 1-10. https://doi.org/10.4028/www.scientific.net/SSP.176.1.
- Li, Z., Ouyang, W., Wang, Z., Zheng, R., Bao, Y. & Gu, C. (2023). Physical simulation study on flow field characteristics of molten steel in 70t ladle bottom argon blowing process. Metals. 13(4), 639, 1-14. DOI:10.3390/met13040639.
- Panic, B. & Janiszewski, K. (2014). Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces. Metalurgija. 53(3), 331-334.
- Michalek, K. (2001). The use of p hysical modeling and numerical optimization for metallurgical processe Ostrawa: Publishing of the VSB.
- Müller, L. (1983). Application of Dimensional Analysis in Model Research (Zastosowanie analizy wymiarowej w badaniach modelowych). Warszawa: PWN, Poland. (in Polish).
- Merder, T. (2018). Numerical analysis of the liquid flow structure in the tundish with physical model verification. Archives of Metallurgy and Materials. 63(4), 1895-1901. DOI: 10.24425/amm.2018.125121.
- Merder, T., Warzecha, M., Warzecha, P., Pieprzyca, J. & Hutny, A. (2019). Modeling research technique of nonmetallic inclusions distribution in liquid steel during its flow through the tundish water model. Steel Research International. 90(7), 1-10. DOI:1002/srin.201900193.
- Jowsa, J. (2008). Engineering of ladle processes in metallurgy (Inżynieria procesów kadziowych w metalurgii). Częstochowa: University of Technology Publishing, Poland. (in Polish).
- Falkus J. (1998). Physical and mathematical modeling of metal bath mixing processes in metallurgical reactors (Fizyczne i matematyczne modelowanie procesów mieszania kąpieli metalowej w reaktorach metalurgicznych). Rozprawy i Monografie nr 71. Kraków: Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Poland. (in Polish).
- Levenspiel, O. (1999). Chemical reaction engineering. New York: John Wiley & Sons, Inc.
- Pieprzyca, J., Merder, T. & Jowsa, J. (2015). Method for determining the time constants characterizing the intensity of steel mixing in continuous casting tundish. Archives of Metallurgy and Materials. 60(1), 245-249. DOI: 10.1515/amm-2015-0039.
- Szekely, J., Illegbussi, O.J. (1998). The physical and mathematical modeling of tundish operations. Berlin: Springer-Verlag.
- Wen, C.Y., Fan, L.T. (1975). Models for flow systems and chemical reactions. New York: Dekker.