Details

Title

The Effect of Turbulence Inhibitor Design on the Movement of Liquid Steel in a Tundish - Modelling Studies

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Merder, T. : Silesian University of Technology, Poland ; Pieprzyca, J. : Silesian University of Technology, Poland ; Strózik, L. : ArcelorMittal Warszawa Sp. z o.o., Poland ; Andrukowicz, A. : ArcelorMittal Warszawa Sp. z o.o., Poland ; Czapka, Z. : Zakłady Magnezytowe "ROPCZYCE" S.A., Poland ; Saternus, M. : Silesian University of Technology, Poland ; Merder, J. : University of Economics in Katowice, Poland

Keywords

Steel ; Tundish ; Water models ; Physical modelling

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Kudliński, Z. (2006). Steel casting technologies (Technologie odlewania stali). University Press of the Silesian University of Technology, Gliwice. (in Polish).
  2. Lis, T. (2009). Metallurgy of high-purity steel (Metalurgia stali o wysokiej czystości). University Press of the Silesian University of Technology, Gliwice. (in Polish).
  3. Irwing, W.R. (1993). Continuous casting of steel. London: Publishing of the Institute of Materials.
  4. Louhenkilpi, S. (2024). Continuous casting of steel. In Treatise on process metallurgy vol. 3: Industrial Processes (pp. 373-434). Publishing of the Royal Institute of Technology, Stockholm, Sweden.
  5. Bulko, B., Priesol, I., Demeter, P., Gašparovic, P., Baricová, D. & Hrubovcáková, M. (2018). Geometric modification of the tundish impact point. Metals. 8(1), 944, 1-11. DOI:10.3390/met8110944.
  6. Cwudziński, A. (2015). Numerical simulation of the liquid steel alloying process in a one-strand tundish with different addition positions and flow control devices. Metallurgical Research & Technology. 112(3), 308. DOI: 1051/metal/2015016.
  7. Zhu, M., Peng, S., Jiang, K., Luo, J., Zhong, Y. & Tang, P. (2022) Fluid flow and heat transfer behaviors under non-isothermal conditions in a four-strand tundish. Metals. 12(5), 840, 1-15. DOI: 3390/met12050840.
  8. Ling, H. & Zhang, L. (2013). Numerical simulation of the growth and removal of inclusions in the molten steel of a two-strand tundish. JOM. 2013. 65(9), 1155-1163. DOI: 1007/s11837-013-0689-x.
  9. Morales, R.D., Guarneros, J., Chattopadhyay, K., Nájera-Bastida, A. & Rodríguez, J. (2019). Fluid flow control in a billet tundish during steel filling operations. Metals. 9(3), 394, 1-13. DOI:10.3390/met9040394.
  10. Wang, K., Tie, Z., Cai, S., Wang, H., Tang, H. & Zhang, J. (2023). Flow control to a t-shaped five strand tundish for ist overall enhanced metallurgical effects with an approachable identical product quality. ISIJ International. 63(8), 1351-1359. DOI: 2355/isijinternational.ISIJINT-2023-008.
  11. Bulko, B., Molnár, M., Demeter, P., Baricová, D., Pribulová, A., Futás, P. (2018). Study of the influence of intermix conditions on steel cleanliness. Metals. 8(10), 852, 1-9. DOI:10.3390/met8100852.
  12. Merder, T. & Pieprzyca, J. (2011). Numerical modeling of the influence subflux controller of turbulence on steel flow in the tundish. Metalurgija. 50(4), 223-226.
  13. Morales, R.D., García-Hernández, S., Barreto Sandoval, J., Ceballos-Huerta, A., Ramos, I.C., Gutiérrez, E. (2016). Multiphase flow modeling of slag entrainment during ladle change operation. Metallurgical and Materials Transactions B. 47(4), 2595-2606. DOI:10.1007/s11663-016-0663-4.
  14. Neumann, S., Asad, A. & Schwarze, R. (2020). Numerical simulation of an industrial-scale prototypical steel melt tundish considering flow control and cleaning strategies. Advanced Engineering Materials. 22(2), 1900658, 1-11. DOI:10.1002/adem.201900658.
  15. Sheng, D.Y. & Windisch, C. (2022). A simulation-based digital design methodology for studying conjugate heat transfer in tundish. Metals. 12 (1), 62, 1-21. DOI:10.3390/met12010062.
  16. Qin, X., Cheng, C., Li, Y., Wu, W. & Jin, Y. (2022). Bubble behaviour under a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. Journal of Materials Research and Technology. 21(10), 3195-3206. DOI: 1016/j.jmrt.2022.10.100.
  17. Yamamoto, T., Suzuki, A., Komarova, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
  18. Saternus, M., Merder, T. & Warzecha P. (2011). Numerical and physical modelling of aluminium barbotage process. Solid State Phenomena. 176, 1-10. https://doi.org/10.4028/www.scientific.net/SSP.176.1.
  19. Li, Z., Ouyang, W., Wang, Z., Zheng, R., Bao, Y. & Gu, C. (2023). Physical simulation study on flow field characteristics of molten steel in 70t ladle bottom argon blowing process. Metals. 13(4), 639, 1-14. DOI:10.3390/met13040639.
  20. Panic, B. & Janiszewski, K. (2014). Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces. Metalurgija. 53(3), 331-334.
  21. Michalek, K. (2001). The use of p hysical modeling and numerical optimization for metallurgical processe Ostrawa: Publishing of the VSB.
  22. Müller, L. (1983). Application of Dimensional Analysis in Model Research (Zastosowanie analizy wymiarowej w badaniach modelowych). Warszawa: PWN, Poland. (in Polish).
  23. Merder, T. (2018). Numerical analysis of the liquid flow structure in the tundish with physical model verification. Archives of Metallurgy and Materials. 63(4), 1895-1901. DOI: 10.24425/amm.2018.125121.
  24. Merder, T., Warzecha, M., Warzecha, P., Pieprzyca, J. & Hutny, A. (2019). Modeling research technique of nonmetallic inclusions distribution in liquid steel during its flow through the tundish water model. Steel Research International. 90(7), 1-10. DOI:1002/srin.201900193.
  25. Jowsa, J. (2008). Engineering of ladle processes in metallurgy (Inżynieria procesów kadziowych w metalurgii). Częstochowa: University of Technology Publishing, Poland. (in Polish).
  26. Falkus J. (1998). Physical and mathematical modeling of metal bath mixing processes in metallurgical reactors (Fizyczne i matematyczne modelowanie procesów mieszania kąpieli metalowej w reaktorach metalurgicznych). Rozprawy i Monografie nr 71. Kraków: Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Poland. (in Polish).
  27. Levenspiel, O. (1999). Chemical reaction engineering. New York: John Wiley & Sons, Inc.
  28. Pieprzyca, J., Merder, T. & Jowsa, J. (2015). Method for determining the time constants characterizing the intensity of steel mixing in continuous casting tundish. Archives of Metallurgy and Materials. 60(1), 245-249. DOI: 10.1515/amm-2015-0039.
  29. Szekely, J., Illegbussi, O.J. (1998). The physical and mathematical modeling of tundish operations. Berlin: Springer-Verlag.
  30. Wen, C.Y., Fan, L.T. (1975). Models for flow systems and chemical reactions. New York: Dekker.

Date

17.03.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153779
×