Details

Title

Influence of Heat Treatment and Plastic Deformation on the Mechanical and Electrical Properties of Cu-Sc Alloys Prepared by Continuous Casting Process

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Franczak, K. : AGH University of Krakow, Poland

Keywords

Heat treatment ; Copper alloys ; Copper-scandium ; Continuous casting ; Metallurgical synthesis

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Davis, J.R. (2001). ASM Specialty Handbook: copper and copper alloys. United States of America: ASM International.
  2. Warlimont, H., Martienssen, W. (2018). Springer handbook of materials data. Springer Nature Switzerland AG.
  3. Liu, P., Tong, L., Wang, J., Shi, L. & Tang, H. (2012), Challenges and developments of copper wire bonding technology. Microelectronics Reliability. 52(6), 1092-1098. https://doi.org/10.1016/j.microrel.2011.12.013.
  4. Franczak, K., Sadzikowski, M., Kwaśniewski, P., Kiesiewicz, G., Ściężor, W. & Kordaszewski, S. (2024). Research on alloying elements’ influence on CuETP-grade copper’s mechanical and electrical properties. 17(12), 3020, 1-20. https://doi.org/10.3390/ma17123020.
  5. Zakharov, M.V., Zakharov, A.M., Popov, O.P. & Dashevskaya, N.E. (1970). The effect of scandium on the properties of copper and some copper alloys. Izvest Vuz Tsvetnaya Met. 4, 117-121.
  6. Subramanian, P.R, Laughlin, D.E. & Chakrabarti, D.J. (1988). The Cu-Sc (copper-scandium) system. Bulletin of Alloy Phase Diagrams. 9(3a), 378-382.
  7. Goncharuk, L.V. & Sidorko, V.R. (2006). Thermodynamic properties of scandium – copper compounds. Powder Metallurgy and Metal Ceramics. 45, 72-75. https://doi.org/10.1007/s11106-006-0043-8.
  8. Franczak, K., Kwaśniewski, P., Kiesiewicz, G., Zasadzińska, M., Jurkiewicz, B., Strzepek, P. & Rdzawski, Z. (2020). Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys. Archives of Civil and Mechanical Engineering. 20, 1-15. DOI: 10.1007/s43452-020-00035-z.
  9. Dölling, J., Henle, R., Prahl, U., Zilly, A. & Nandi, G. (2022). Copper-based alloys with optimized hardness and high conductivity: research on precipitation hardening of low-alloyed binary CuSc alloys. Metals. 12(6), 1-24. https://doi.org/10.3390/met12060902.
  10. Hao, Z., Xie, G., Liu, X., Tan, Q. & Wang, R. (2022). The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy. Journal of Materials Science & Technology. 98, 1-13. https://doi.org/10.1016/j.jmst.2020. 12.081.
  11. Dölling, J., Kracun, S.F., Prahl, U., Fehlbier, M., Zilly, A & (2023). A comparative differential scanning calorimetry study of precipitation hardenable copper-based alloys with optimized strength and high conductivity. 13(1), 150, 1-29. https://doi.org/10.3390/met13010150.
  12. Henle, R., Kött, S., Jost, N., Nandi, G., Dölling, J., Zilly, A., & Prahl, U. (2024) Investigation of the solid solution hardening mechanism of low-alloyed copper–scandium alloys. Metals. 14(7), 831, 1-22. https://doi.org/10.3390/met14070831.
  13. Seung, Z. H., Eun-Ae, C., Sung, H. L., Sangshik, K. & Jehyun, L. (2021). Alloy design strategies to Increase strenght and its trade-offs together. Progress in Materials Science. 117, 100720, 1-51. https://doi.org/10.1016/j.pmatsci.2020.100720.
  14. Qingzhong, M., Yanfang, L., Yonghao, Z. (2024). A review on copper alloys with high strength and high electrical conductivity. Journal of Alloys and Compounds. 990, 174456, 1-20. https://doi.org/10.1016/j.jallcom.2024.174456.
  15. Kawecki, A., Sieja-Smaga, E., Kwaśniewski, P., Kiesiewicz, G., & Kretowicz, P. (2022). The influence of heat treatment and plastic deformation on the electrical and mechanical properties of CuAg alloys for the construction of high-field bitter type electromagnets. 61, 745-748.
  16. Kawecki, A., Sieja-Smaga, E., Mamala, A., Kwaśniewski, P., Kiesiewicz, G., Smyrak, B. & Ściężor, W. (2023). Manufacturing and properties of cast Cu-Ag alloys designed for electrotechnical applications. 62, 367-370.
  17. Ściężor, W., Kowal, R., Grzebinoga, J., Kiesiewicz, G., Kwaśniewski, P. & Mamala, A. (2023). Research on the influence of the proportion of nickel and silicon on the mechanical and electrical properties of CuNiSi alloys. 62, 419-422.
  18. Łagoda, M., Głuchowski, W., Maleta, M., Domagała-Dubiel, J. & Sadzikowski, M. (2022). Characteristics of CuCrTiAl alloy after plastic deformation. 61, 831-834.
  19. Mahmoudi, J. (2005). Horizontal continuous casting of copper-based alloys. International Journal of Cast Metals Research. 18(6), 355-369. https://doi.org/10.1179/136404605225023099.
  20. Knych, T., Mamala, A., & Ściężor, W. (2013). Effect of selected alloying elements on aluminium physical properties and its effect on homogenization after casting. Light Metals Technology. 765, 471-475, 10.4028/www.scientific.net/MSF.765.471.
  21. Liu, X.F., Yi, F. & Zhang, M. (2018). Effect of process parameters on the surface quality, microstructure and properties of pure copper wires prepared by warm mold continuous casting. 529, 13-23. https://doi.org/10.1080/00150193.2018.1448178.
  22. Mamala, A., Ściężor, W., Kwaśniewski, P., Grzebinoga, J. & Kowal, R. (2016). Study of the mechanical properties of strips obtained in TRC line. Archives of Metallurgy and Materials. 61, 1101-1108. DOI: 10.1515/amm-2016-0185.
  23. Franczak, K., Kwaśniewski, P., Kiesiewicz, G., Sadzikowski, M., Ściężor, W., Kordaszewski, S. & Kuca, D. (2022). Research on the continuous casting process of CuCrZr alloys with the addition of scandium dedicated for resistance welding electrodes. 61, 631-633.

Date

17.03.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153780
×