Details
Title
Assessment of Mechanical Behaviors of Sand Cast Al-Mg7-Cu2 Aluminum Alloy in Tilt and Vertical Gravity Casting ConditionsJournal title
Archives of Foundry EngineeringYearbook
2025Volume
vol. 25Issue
No 1Authors
Affiliation
Gül, K.A. : Istanbul Technical University, Turkey ; Gül, K.A. : Groupe Renault, Turkey ; Sahin, H. : VESUVIUS Foundry R&D Center, Netherlands ; Dispinar, D. : VESUVIUS Foundry R&D Center, NetherlandsKeywords
Vertical top pouring ; Tilt pouring ; Hydraulic jump ; Defect formation on aluminum alloys ; Melt treatmentsDivisions of PAS
Nauki TechniczneCoverage
169-179Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Campbell, J. (2006). Entrainment defects. Materials Science And Technology. 22(2), 127-145. http://dx.doi.org/10.1179/174328406X74248.
- Campbell, J. (2012). Stop pouring, start casting. International Journal of Metal Casting. 6(3), 7-18. https://doi.org/10.1007/BF03355529.
- Mohamed, A. M. A., Samuel, E., Samuel, A. M., Doty, H. W., Songmene, V. & Samuel, F. H. (2023). Effect of intermetallics and tramp elements on porosity formation and hardness of Al–Si–Mg and Al–Si–Cu–Mg alloys. International Journal of Metalcasting. 17(2), 664-681. https://doi.org/10.1007/s40962-022-00813-w.
- Costa, T.A., Dias, M., Gomes, L.G. Rocha, O.L. & Garcia, A. (2016). Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy. Journal of Alloys and Compounds. 683, 485-494. https://doi.org/10.1016/j.jallcom.2016.05.099.
- Campbell, J. (2015). Complete casting handbook: Metal casting processes, metallurgy, techniques and design. UK: Butterworth-Heinemann.
- Ibrahim, A., Elgallad, E., Samuel, A., Doty, H. & Samuel, F. (2018). Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys. International Journal of Materials Research. 109(4), 314-331. https://doi.org/10.3139/146.111605.
- Salihu, S., Isa, and A. & Polycarp, E. (2012). Influence of magnesium addition on mechanical properties and microstructure of Al-Cu-Mg alloy. IOSR Journal of Pharmacy and Biological Sciences. 4(5), 15-20. https://doi.org/10.9790/3008-0451520.
- Rana, R. S., Purohit, R., & Das, S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications, 2(6).
- Mansurov, Y., Letyagin, N., Finogeyev, A. & Rakhmonov, J.U. (2018). Influence of impurity elements on the casting properties of Al-Mg based alloys. Non-Ferrous Metals. 44(1), 24-29.
- Mikhaylovskaya, V., Mochugovskiy, A.G., Levchenko, V.S., Tabachkova, N.Y., Mufalo, W. & Portnoy, V.K. (2018). Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy. Materials Characterization. 139, 30-37. https://doi.org/10.1016/j.matchar.2018.02.030.
- Mortensen, A., Grimes, R. & Suresh, S. (2000). Aluminum alloys for aerospace applications. Materials Science and Engineering: A. 280(1), 37-49.
- Scampone, G., Pirovano, R., Mascetti, S. et al.Experimental and numerical investigations of oxide-related defects in Al alloy gravity die castings. Int J Adv Manuf Technol 117, 1765–1780 (2021). https://doi.org/10.1007/s00170-021-07680-5
- Nadella, R., Eskin, D., Katgerman, L. (2016). Effect of Grain Refining on Defect Formation in DC Cast Al-Zn-Mg-Cu Alloy Billet. In: Grandfield, J.F., Eskin, D.G. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48228-6_105.
- Barnett, M.R. (2000). Review: The influence of copper additions on the age-hardening behaviour of aluminium alloys. Materials Science and Engineering: A. 280(1), 1-13.
- Lee, S.-L., Wu, C.-T. & Chen, Y.-D. (2015). Effects of minor Sc and Zr on the microstructure and mechanical properties of Al-4.6Cu-0.3Mg-0.6Ag alloys. Journal of Materials Engineering and Performance. 24, 10-20, https://doi.org/10.1007/s11665-014-1364-2.
- Bai, S., Huang, T., Xu, H., Liu, Z., Wang, J. & Yi, X. (2019). Effects of small Er addition on the microstructural evolution and strength properties of an Al–Cu–Mg–Ag alloy aged at 200°C. Materials Science and Engineering: A. 766, 138351. https://doi.org/10.1016/j.msea.2019.138351.
- Elgallad, E., Samuel, F., Samuel, A. & Doty, H. (2009). Development of new Al-Cu based alloys aimed at improving the machinability of automotive castings. International Journal of Metalcasting. 3, 29-41. https://doi.org/10.1007/BF03355446.
- Mahmoud, M. G., Samuel, A. M., Doty, H. W. & Samuel, F. H. (2020). Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. International Journal of Metalcasting. 14, 191–206. https://doi.org/10.1007/s40962-019-00351-y.
- Yao, D., Qiu, F., Jiang, Q., Li, Y. & Arnberg, L. (2013). Effect of lanthanum on grain refinement of casting aluminum-copper alloy. International Journal of Metalcasting. 7, 49-54. https://doi.org/10.1007/BF03355544.
- Ibrahim, A. I., Samuel, A. M., Doty, H. W., & Samuel, F. H. (2018). Response of varying levels of silicon and transition elements on room- and elevated-temperature tensile properties in an Al–Cu alloy. International Journal of Metalcasting. 12, 396-414. https://doi.org/10.1007/s40962-017-0177-0.
- Ibrahim, A. I., Elgallad, E. M., Samuel, A. M., Doty, H. W., & Samuel, F. H. (2018). Effects of addition of transition metals on intermetallic precipitation in Al–2%Cu–1%Si-based alloys. International Journal of Metalcasting. 12, 574-588. https://doi.org/10.1007/s40962-017-0196-x.
- Gyarmati, G., Fegyverneki, G., Tokár, M. & Mende, T. (2020). The effects of rotary degassing treatments on the melt quality of an Al–Si casting alloy. International Journal of Metal Casting. 15(1), 141-151. https://doi.org/10.1007/s40962-020-00428-z.
- Uludağ, M., Çetin, R., Dispinar, D. & Tiryakioğlu, M. (2017). Characterization of the effect of melt treatments on melt quality in Al-7wt%Si-Mg alloys. Metals. 7(5), 157, 1-16. https://doi.org/10.3390/met7050157.
- Eskin, D., Alba-Baena, N., Pabel, T. & da Silva, M. (2015). Ultrasonic degassing of aluminium alloys: basic studies and practical implementation. Materials Science and Technology. 31(1), 79-84. https://doi.org/10.1179/1743284714Y. 0000000587.
- Fan, Z. Y., Zuo, Y. B., & Jiang, B. (2011). A new technology for treating liquid metals with intensive melt shearing. Materials Science Forum. 690, 141-144.
- Zuo, Y.B., Jiang, B., Zhang, Y.J. & Fan, Z. (2013). Degassing LM25 aluminium alloy by novel degassing technology with intensive melt shearing. International Journal of Cast Metals Research. 26(1), 16-21. https://doi.org/10.1179/1743133612Y.0000000019.
- Yamamoto, T., Kato, K., Komarov, S.V., Ueno, Y., Hayashi, M. & Ishiwata, Y. (2018). Investigation of melt stirring in aluminum melting furnace through water model. Journal of Materials Processing Technology. 259, 409-415. https://doi.org/10.1016/j.jmatprotec.2018.04.025.
- Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J.L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: Modelling and experimental validation of mould filling. Materials & Design. 94, 384-391. https://doi.org/10.1016/j.matdes.2016.01.059.
- Puga, H., Barbosa, J., Teixeira, J.C. & Prokic, M. (2014). A new approach to ultrasonic degassing to improve the mechanical properties of aluminum alloys. Journal of materials engineering and performance. 23(10), 3736-3744. https://doi.org/10.1007/s11665-014-1133-2.
- Puga, H., Barbosa, J., Seabra, E., Ribeiro, S. & Prokic, M. (2009). The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminum alloy. Materials Letters. 63(9-10), 806-808. https://doi.org/10.1016/j.matlet.2009.01.009.
- Uludağ, M., Gemi, L., Çetin, R. & Dispinar, D. (2016). The effect of holding time and solidification rate on porosity of A356. American Journal of Engineering Research (AJER). 5(12), 271-275. e-ISSN: 2320-0847.
- Atakav, B., Gürsoy, Ö., Erzi, E., Tur, K. & Dispinar, D. (2020). Sr addition and its effect on the melt cleanliness of A356. Materials Research Express. 7(2), 026549. DOI: 10.1088/2053-1591/ab735b.
- Raiszadeh R. & Griffiths, W.D. (2011). The effect of holding liquid aluminum alloys on oxide film content. Metallurgical and Materials Transactions B. 42(1), 133-143. https://doi.org/10.1007/s11663-010-9439-4.
- Piccioli, M., Aanesen, S.V., Zhao, H., Dudek, M. & Øye, G. (2020). Gas flotation of petroleum produced water: A review on status, fundamental aspects, and perspectives. Energy & Fuels. 34(12), 15579-15592. https://doi.org/10.1021/ acs.energyfuels.0c03262.
- Shen, W., Mukherjee, D., Koirala, N., Hu, G., Lee, K., Zhao, M. & Li, J. (2022). Microbubble and nanobubble-based gas flotation for oily wastewater treatment: A review. Environmental Reviews. 30(3), 359-379. https://doi.org/10.1139/er-2021-0127.
- Hamzah, E., Prayitno, D. & Ghazali, M.Z.M. (2022). Effect of mold tilt angle on the mechanical properties of as-cast aluminum alloy. Materials & design. 23(2), 189-194. https://doi.org/10.1016/S0261-3069(01)00068-1.
- Birsan, G., Ashtari, P. & Shankar, S. (2011). Valid mold and process design to cast tensile and fatigue test bars in tilt pour casting process. International Journal of Cast Metals Research. 24(6), 378-384. https://doi.org/10.1179/1743133611Y.0000000005.
- Şahin, H. (2022). Effect of different addition ratio of rare earth elements erbium and europium on microstructure and mechanical properties of A356 (Al-7Si-0.3Mg) alloy. Master Thesis, Istanbul Technical University.
- Nabawy, A. M., Samuel, A. M., Doty, H. W., & Samuel, F. H. (2021). A review on the criteria of hot tearing susceptibility of aluminum cast alloys. International Journal of Metalcasting. 15, 1362-1374. https://doi.org/10.1007/s40962-020-00559-3.
- Tao, C., Huang, H., Yuan, X., Yue, C., Su, M., & Zuo, X. (2022). Effect of Y element on microstructure and hot tearing sensitivity of as-cast Al–4.4Cu–1.5Mg–0.15Zr alloy. International Journal of Metalcasting. 16(2), 1010-1019. https://doi.org/10.1007/s40962-021-00666-9.
- Patel, J. B., Yang, X., Mendis, C. L., & Fan, Z. (2017). Melt conditioning of light metals by application of high shear for improved microstructure and defect control. JOM, 69(6), 1071-1078. https://doi.org/10.1007/s11837-017-2335-5
- Şahin H. & Dispinar, D. (2024). Estimating toughness limit of cast aluminum alloys with reduced pressure test. International Journal of Metalcasting. 1-7. https://doi.org/10.1007/s40962-024-01453-y.
- Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280-286. https://doi.org/10.1179/136404604225020696.
- Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294. https://doi.org/10.1179/136404604225020704.
- Fuchs, P., Kröger, T. & Garbe, C.S. (2021). Defect detection in CT scans of cast aluminum parts: A machine vision perspective. Neurocomputing. 453, 85-96. https://doi.org/10.1016/j.neucom.2021.04.094.
- Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925, 1-10. https://doi.org/10.1016/j.matchar.2019.109925.
- Gul, K. A., Dispinar, D., Kayali, E. S. & Aslan, O. (2023). Assessment of tensile properties of cast high Mg-containing Al-Mg-Cu aluminum alloy with correlation of computed tomography scans and optical crack surface analysis. International Journal of Metalcasting. 17(4), 2622-2637. https://doi.org/10.1007/s40962-023-01038-1.
- Gul, A., Aslan, O., Kayali, E.S. & Bayraktar, E. (2023). Assessing cast aluminum alloys with computed tomography defect metrics: A Gurson porous plasticity approach. 13(4), 752, 1-20. https://doi.org/10.3390/met13040752.
- Zhang, H., Zhang, C., Zhou, P., Du, Y., Peng, Y., Liu, S., Wang, J. & Li, K. (2018). Experimental investigation of the Mo–Ti–Zr ternary phase diagrams. Journal of Phase Equilibria and Diffusion. 39, 789-799. https://doi.org/10.1007/s11669-018-0668-6.
- Majidi H. & Beckermann, C. (2019). Effect of pouring conditions and gating system design on air entrainment during casting. International Journal of Metalcasting. 13(2), 255-272. https://doi.org/10.1007/s40962-018-0272-x.