Details

Title

Anti-inflammatory effects of glycyrrhizin on lipoteichoic acid and lipopolysaccharide-induced bovine mastitis

Journal title

Polish Journal of Veterinary Sciences

Yearbook

2025

Volume

vol. 28

Issue

No 1

Authors

Affiliation

Kurumisawa, T. : School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan ; Kurumisawa, T. : Azabu University Mastitis Research Center, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan ; Kazama, K. : School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan ; Gondaira, S. : Graduate School of Veterinary Medicine, Rakuno Gakuen University, 852 Midorimachi Bunkyoudai, Ebetsu 069-8501, Japan ; Higuchi, H. : Graduate School of Veterinary Medicine, Rakuno Gakuen University, 852 Midorimachi Bunkyoudai, Ebetsu 069-8501, Japan ; Eguchi, A. : Graduate School of Veterinary Medicine, Rakuno Gakuen University, 852 Midorimachi Bunkyoudai, Ebetsu 069-8501, Japan ; Onda, K. : School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan ; Roh, S-G. : Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan ; Kawai, K. : School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan ; Kawai, K. : Azabu University Mastitis Research Center, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Japan

Keywords

anti-inflammatory effect ; bovine mammary epithelial cells ; bovine mastitis ; glycyrrhizin ; lipopolysaccharide ; lipoteichoic acid

Divisions of PAS

Nauki Biologiczne i Rolnicze

Coverage

35–42

Publisher

Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn

Bibliography

Batiha GE, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP (2020) Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of glycyrrhiza glabra L. (fabaceae). Biomolecules 10: 352.

Bhattarai D, Worku T, Dad R, Rehman ZU, Gong X, Zhang S (2018) Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog 120: 64-70.

Bougarn S, Cunha P, Gilbert FB, Meurens F, Rainard PS (2011) Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. J Dairy Sci 94: 2425-2430.

Bougarn S, Cunha P, Harmache A, Fromageau A, Gilbert FB, Rainard P (2010) Muramyl dipeptide synergizes with staphylococcus aureus lipoteichoic acid to recruit neutrophils in the mammary gland and to stimulate mammary epithelial cells. Clin Vaccine Immunol 17: 1797-1809.

Fitzpatrick CE, Chapinal N, Petersson-Wolfe CS, DeVries TJ, Kelton DF, Duffield TF, Leslie KE (2013) The effect of meloxicam on pain sensitivity, rumination time, and clinical signs in dairy cows with endotoxin-induced clinical mastitis. J Dairy Sci 96: 2847-2856.

Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z (2014) Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J 281: 2543-2557.

Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert Granié C, Rupp R, Rainard P (2013) Differential response of bovine mammary epithelial cells to staphylococcus aureus or escherichia coli agonists of the innate immune system. Vet Res 44: 40.

Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, Seyfert HM (2004) Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 11: 174-185.

Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ (2005) Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol 5: 27.

Griesbeck-Zilch B, Meyer HH, Kühn CH, Schwerin M, Wellnitz O (2008) Staphylococcus aureus and escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J Dairy Sci 91: 2215-2224.

Günther J, Koy M, Berthold A, Schuberth HJ, Seyfert HM (2016) Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Vet Res 47: 22.

Halasa T, Huijps K, Østerås O, Hogeveen H (2007) Economic effects of bovine mastitis and mastitis management: a review. Vet Q 29: 18-31.

Hasan MK, Ara I, Mondal MS, Kabir Y (2021) Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 7: e07240.

Honda H, Nagai Y, Matsunaga T, Saitoh S, Akashi-Takamura S, Hayashi H, Fujii I, Miyake K, Muraguchi A, Takatsu K (2012) Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. J Leukoc Biol 91: 967-976.

Hosseinzadeh H, Nassiri-Asl M (2015) Pharmacological effects of glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother Res 29: 1868-1886.

Hu H, Wang J, Bu D, Wei H, Zhou L, Li F, Loor J (2009) In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow. PloS One 4: e7636.

Huynh HT, Robitaille G, Turner JD (1991) Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res 197: 191-199.

Imaizumi N, Gondaira S, Kamioka M, Sugiura T, Eguchi A, Nishi K, Fujiki J, Iwano H, Higuchi H (2024) Innate immune response of bovine mammary epithelial cells in Mycoplasma bovis mastitis using an in vitro model of bovine mammary gland infection J Vet Med Sci 86: 712-720.

Kai K, Komine K, Asai K, Kuroishi T, Komine Y, Kozutsumi T, Itagaki M, Ohta M, Endo Y, Kumagai K (2003) Anti-inflammatory effects of intramammary infusions of glycyrrhizin in lactating cows with mastitis caused by coagulase-negative staphylococci. Am J Vet Res 64: 1213-1220.

Kato T, Horie N, Hashimoto K, Satoh K, Shimoyama T, Kaneko T, Kusama K, Sakagami H (2008) Bimodal effect of glycyrrhizin on macrophage nitric oxide and prostaglandin E2 production. In Vivo 22: 583-586.

Kurumisawa T, Yagisawa T, Shinozuka Y, Kawai K (2022) Effect of glycyrrhizin administration followed by symptom-based antimicrobial selection therapy on antimicrobial use in clinical mastitis without systemic symptoms. J Vet Med Sci 84: 1265-1271.

Lee JW, Bannerman DD, Paape MJ, Huang MK, Zhao X (2006) Characterization of cytokine expression in milk somatic cells during intramammary infections with escherichia coli or staphylococcus aureus by real-time PCR. Vet Res 37: 219-229.

Nobrega DB, De Buck J, Naqvi SA, Liu G, Naushad S, Saini V, Barkema HW (2017) Comparison of treatment records and inventory of empty drug containers to quantify anti-microbial usage in dairy herds. J Dairy Sci 100: 9736-9745.

De Souza FN, Sanchez EM, Heinemann MB, Gidlund MA, De Campos Reis L, Blagitz MG, Libera AM, Cerqueira MM (2012) The innate immunity in bovine mastitis: the role of pattern-recognition receptors. Am J Immunol 8: 166-178.

O’Gorman GM, Park SD, Hill EW, Meade KG, Mitchell LC, Agaba M, Gibson JP, Hanotte O, Naessens J, Kemp S, MacHugh DE (2006) Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with trypanosoma congolense. Physiol Genomics 28: 53-61.

Oviedo-Boyso J, Valdez-Alarcón J, Cajero-Juárez M, Ochoa-Zarzosa A, López-Meza J, Bravo-Patiño A, Baizabal-Aguirre VM (2007) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54: 399-409.

Petersson-Wolfe CS, Leslie KE, Swartz TH (2018) An update on the effect of clinical mastitis on the welfare of dairy cows and potential therapies. Vet Clin North Am Food Anim Pract 34: 525-535.

Prince LR, Whyte MK, Sabroe I, Parker LC (2011) The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11: 397-403.

Robinson TL, Sutherland IA, Sutherland J (2007) Validation of candidate bovine reference genes for use with real-time PCR. Vet Immunol Immunopathol 115: 160-165.

Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R (2005) Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31: 72-86.

Wellnitz O, Arnold ET, Bruckmaier RM (2011) Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland. J Dairy Sci 94: 5405-12.

Whelehan CJ, Meade KG, Eckersall PD, Young FJ, O’Farrelly C (2011) Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet Immunol Immunopathol 140: 181-189.

World Health Organization (2015) Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/
9789241509763.

Xu T, Deng R, Li X, Zhang Y, Gao MQ (2019) RNA-seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells. Microb Pathog 130: 169-177.

Yang R, Wang L, Yuan B, Liu Y (2015) The pharmacological activities of licorice. Planta Med 81: 1654-1669.

Yoshida T, Abe K, Ikeda T, Matsushita T, Wake K, Sato T, Inoue H (2007) Inhibitory effect of glycyrrhizin on lipopolysaccharide and d-galactosamine-induced mouse liver injury. Eur J Pharmacol 576: 136-142.

Date

20.03.2025

Type

Article

Identifier

DOI: 10.24425/pjvs.2025.154011
×