Details

Title

An innovative method of predicting the maximum flowin stormwater sewage systems using soft-sensors

Journal title

Archives of Environmental Protection

Yearbook

2025

Volume

51

Issue

3

Authors

Affiliation

Barbusiński, Krzysztof : Department of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, Poland ; Szeląg, Bartosz : Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland ; Białek, Anita : Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland ; Kalenik, Marek : Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Poland ; Bakalár, Tomáš : Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice,Slovak Republic

Keywords

Model uncertainty; ; soft sensors; ; maximum flow prediction; ; machine learning - ML; ; energy consumptionoptimization; ; MARS model;

Divisions of PAS

Nauki Techniczne

Coverage

54-73

Publisher

Polish Academy of Sciences

Bibliography

  1. Addison-Atkinson, W., Chen, A.S., Memon, F.A. & Chang, T.J., 2022. Modelling urban sewer flooding and quantitative microbial risk assessment: a critical review. J. Flood Risk Mangement. 15, e12844.
  2. Amiri, H., Azadi, S., Javadpour, S., Naghavi, A.A. & Boczkaj, G., 2022. Selecting wells for an optimal design of groundwater monitoring network based on monitoring priority map: a Kish Island case study. Water Resour. Ind. 27, 100172 DOI:10.1016/j.wri.2022.100172.
  3. Bach, P. M., Kuller, M., McCarthy, D. T. & Deletic, A. (2020). A spatial planning-support system for generating decentralised urban stormwater management schemes. Science of The Total Environment, 138282. DOI:10.1016/j.scitotenv.2020.138282.
  4. Banasik, K., Krajewski, A., Sikorska-Senoner, A. E. & Hejduk, L. (2014). Curve number estimation for a small urban catchment from recorded rainfall-runoff events. Archives of Environmental Protection, 40, 3, pp. 21–30. DOI:10.2478/aep-2014-0032.
  5. Barco, J., Wong, K.M. & Stenstrom, M.K. (2008). Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 134, pp. 466–474. DOI:10.1061/(ASCE)0733-9429(2008)134:4(466).
  6. Bell, C. D., Wolfand, J. M., Panos, C. L., Bhaskar, A. S., Gilliom, R. L., Hogue, T. S. & Jefferson, A. J. (2020). Stormwater control impacts on runoff volume and peak flow: A meta‐analysis of watershed modeling studies. Hydrological Processes. DOI:10.1002/hyp.13784.
  7. Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 34, 16, pp. 3608–3613. DOI:10.1002/hyp.13805.
  8. Bhaskar, A. S., Hogan, D. M., Nimmo, J. R. & Perkins, K. S. (2018). Groundwater recharge amidst focused stormwater infiltration. Hydrological Processes, 32, 13, pp. 2058–2068. DOI:10.1002/hyp.13137.
  9. Birgani, Y. T., Yazdandoost, F. & Malaekepour, S. M. (2013). Urban Drainage Systems Risk Assessment under Climate Change Conditions.
  10. Butler, D., Farmani, R., Fu, G., Ward, S., Diao, K. & Astaraie-Imani, M. (2014). A new approach to urban water management: Safe and sure. Procedia Engineering, 89, pp. 347-354.
  11. Cantone, J. & Schmidt, A. (2011). Improved understanding and prediction of the hydrologic response of highly urbanized catchments through development of the Illinois Urban Hydrologic Model. Water Resources Research, 47, 8. DOI:10.1029/2010wr009330.
  12. Chadalawada, J., Havlicek, V. & Babovic, V. A (2017). Genetic Programming Approach to System Identification of Rainfall-Runoff Models. Water Resour Manage 31, pp. 3975–3992. DOI:10.1007/s11269-017-1719-1.
  13. Cristiano, E., ten Veldhuis, M.C., Gaitan, S., Rodriguez, S.O. & van de Giesen, N. (2018). Critical scales to explain urban hydrological response. Hydrol. Earth Syst. Sci. Discuss. DOI:10.5194/hess-2017-715.
  14. Cristiano, E., ten Veldhuis, M.C., Wright, D.B., Smith, J.A. & van de Giesen, N. (2019). The influence of rainfall and catchment critical scales on urban hydrological response sensitivity. Water Resour. Res. 55, pp. 3375–3390. DOI:10.1029/2018WR024143.
  15. De Paola, F. & Ranucci, A. (2012). Analysis of spatial variability for stormwater capture tank assessment. Irrig. Drain. 61, pp. 682–690. DOI:10.1002/ird.
  16. Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P. & Rieckermann, J. (2013). Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences, 17, 10, pp. 4209–4225. DOI:10.5194/hess-17-4209-2013.
  17. Duan, H., Akker, B. van den, Thwaites, B. J., Peng, L., Herman, C., Pan, Y. & Ye, L. (2020). Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Research, 116196. DOI:10.1016/j.watres.2020.116196
  18. DWA-A 118E, 2006. Hydraulic Dimensioning and Verification of Drain and Sewer Systems. DWA German Association for Water, Wastewater and Waste, Hennef, Germany.
  19. Fatone, F., Szeląg, B., Kiczko, A., Majerek, D., Majewska, M., Drewnowski, J. & Łagód, G. (2021). Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrol. Earth Syst. Sci. 25, pp. 5493–5516. DOI:10.5194/hess-25-5493-2021.
  20. Fraga, I., Cea, L., Puertas, J., Su´arez, J., Jim´enez, V. & J´acome, A. (2016). Global sensitivity and GLUE-based uncertainty analysis of a 2D–1D dual urban drainage model. J. Hydrol. Eng. 21, 04016004. DOI:10.1061/(ASCE)HE.1943-5584.0001335.
  21. Friedman, J. H. & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 3, pp. 197–217. DOI:10.1177/096228029500400303.
  22. Fu, G. & Butler, D. (2014). Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 510, pp. 49–58. DOI:10.1016/j.jhydrol.2013.12.006.
  23. Fu, G., Jin, Y., Sun, S., Yuan, Z. & Butler, D. (2022). The role of deep learning in urban water management: A critical review. Water Research 223, 1 118973, DOI:10.1016/j.watres.2022.118973.
  24. Gargano, R., Di Palma, F., de Marinis, G., Granata, F. & Greco, R. (2015). A stochastic approach for the water demand of residential end users. Urban Water Journal, 13, 6, pp. 569–582. DOI:10.1080/1573062x.2015.1011.
  25. Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A. & ten Veldhuis, M.-C. (2017). Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences, 21, 5, pp./ 2361–2375. DOI:10.5194/hess-21-2361-2017.
  26. Gironás, J., Roesner, L. A., Rossman, L. A. & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM), Environ. Modell. Softw., 25, pp. 813–814. DOI:10.1016/j.envsoft.2009.11.009, 2010.
  27. Gong, Y., Zhang, G., Hao, Y. & Nie, L., 2022. Enrichment Evaluation of Heavy Metals from Stormwater Runoff to Soil and Shrubs in Bioretention Facilities. Water, 14(4), 638. DOI:10.3390/w14040638
  28. Guan, M., Sillanpää, N. & Koivusalo, H. (2015). Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrological Processes, 30, 4, 543-557. DOI:10.1002/hyp.10624.
  29. Guo, K., Guan, M. & Yu, D. (2021). Urban surface water flood modelling – a comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 25, pp. 2843–2860. DOI:10.5194/hess-25-2843-2021.
  30. Guo, K., Guan, M., Haochen, Y. & Xilin, X. (2023). A spatially distributed hydrodynamic model framework for urban flood hydrological and hydraulic processes involving drainage flow quantification. Journal of Hydrology. 625. DOI:10.1016/j.jhydrol.2023.130135.
  31. Hauger, M. B., Mouchel, J. M. & Mikkelsen, P. S. (2006). Indicators of hazard, vulnerability and risk in urban drainage. Water science and technology, 54, 6-7, pp. 441-450. DOI:10.2166/wst.2006.622.
  32. Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P. & Ten Veldhuis, M.-C. (2018). Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 22, 1, pp. 331–350. DOI:10.5194/hess-22-331-2018.
  33. Jato-Espino, D., Sillanpää, N., Andrés-Doménech, I. & Rodriguez-Hernandez, J. (2017). Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis. Journal of Water Resources Planning and Management, 144, 2. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  34. Jato-Espino, D., Sillanp¨a¨a, N., Andr´es-Dom´enech, I. & Rodriguez-Hernandez, J. (2018). Flood risk assessment in urban catchments using multiple regression analysis. J. Water Resour. Planning Manag. 144, 04017085. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  35. Kiczko, A., Szeląg, B., Kozioł, A. P., Krukowski, M., Kubrak, E., Kubrak, J. & Romanowicz, R. J. (2018). Optimal capacity of a stormwater reservoir for flood peak reduction. Journal of Hydrologic Engineering, 23, 4. DOI:10.1061/(ASCE)HE.1943-5584.0001636
  36. Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S. & Nearing, G. S. (2019). Towards Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. DOI:10.1029/2019wr026065
  37. Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H. & Koivusalo, H. (2014). Spatial resolution considerations for urban hydrological modelling, J. Hydrol., 512, pp. 482–497. DOI:10.1016/j.jhydrol.2014.03.013.
  38. Kumar, S., Agarwal, A., Ganapathy, A., Villuri, V.GK. Pasupuleti, S., Kumar, D., Kaushal, D.R., Gosain, A.K. & Sivakuma, B. (2022). . Impact of climate change on stormwater drainage in urban areas. Stoch Environ Res Risk Assess 36, pp. 77–96. DOI:10.1007/s00477-021-02105-x.
  39. Kwon, S. H. & Kim, J. H. (2021). Machine Learning and Urban Drainage Systems: State-of-the-Art Review. Water, 13, 24, 3545. DOI:10.3390/w13243545.
  40. Li, X. & Willems, P. (2020). A hybrid model for fast and probabilistic urban pluvial flood prediction. Water Resour. Res. 56, 6. DOI:10.1029/2019WR025128.
  41. Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M. & Dewals, B. (2022). Laboratory modelling of urban flooding. Sci. Data, 9, 1. DOI:10.1038/s41597-022-01282-w.
  42. Liu, C. Y. & Chui, T. F. M. (2017). Factors influencing stormwater mitigation in permeable pavement. Water, 9, 12, 988. DOI:10.3390/w9120988.
  43. Liu ,J., Cho, H-S., Osman, S., Jeong, H-G. & Lee, K. (2022). Review of the status of urban flood monitoring and forecasting in TC region, Tropical Cyclone Research and Review 11, 2, pp.103-119.. DOI:10.1016/j.tcrr.2022.07.001.
  44. Luiso, J. E. & Giribet, J. I. (2017). Optical flow sensor. 2017 XVII Workshop on Information Processing and Control (RPIC). DOI:10.23919/rpic.2017.8211652.
  45. Meierdiercks, K.L., Smith, J.A., Baeck, M.L. & Miller, A.J. (2010). Analyses of urban drainage network structure and its impact on hydrologic response. JAWRA Journal of the American Water Resources Association 46, pp. 932–943. DOI: 10.1111/j.1752-1688.2010.00465.x.
  46. Mejía, A. I. & Moglen, G. E. (2010). Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrological Processes, 24, 23, pp. 3359–3373. DOI:10.1002/hyp.7755.
  47. Al Mehedi, M. A., Amur, A., Metcalf, J., McGauley, M., Smith, V. & Wadzuk, B. (2023). Predicting the performance of green stormwater infrastructure using multivariate long short-term memory (LSTM) neural network. Journal of Hydrology, 625, 130076. DOI:10.1016/j.jhydrol.2023.130076.
  48. Mondal, K., Bandyopadhyay, S. & Karmakar, S. (2023). Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions. Journal of Environmental Management, 332, 117312. DOI:10.1016/j.jenvman.2023.117312
  49. Moon, H., Yoon, S. & Moon, M., (2023). Urban flood forecasting using a hybrid modeling approach based on a deep learning technique. Journal of Hydroinformatics,25, 2, pp. 593–610. DOI:10.2166/hydro.2023.203.
  50. Mor´an-Valencia, M., Flegl, M. & Güemes-Castorena, D. (2023). A state-level analysis of the water system management efficiency in Mexico: two-stage DEA approach. Water Resour. Ind. 29, 100200 DOI:10.1016/j.wri.2022.100200.
  51. Napiorkowski, J.J., Piotrowski, A.P., Karamuz, E. & Senbeta, T.B. (2023). Calibration of conceptual rainfall-runoff models by selected differential evolution and particle swarm optimization variants. Acta Geophys. 71, pp. 2325–2338. DOI:10.1007/s11600-022-00988-0.
  52. Nowogoński, I. (2019). Emporal and spatial variability of rainfall in modelling of stormwater outflows. CEER; 29, 4, pp. 267-278. DOI: 10.2478/ceer-2019-0060.
  53. Ogden, F.L., Pradhan, N.R., Downer, C.W. & Zahner, J.A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 47, W12503. DOI:10.1029/2011WR010550.
  54. Palmitessa, R., Grum, M., Engsig-Karup, A.P. & Löwe, R. (2022). Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning. Water Res. 223, 118972 DOI:10.1016/j.watres.2022.118972.
  55. Perdikaki, M., Makropoulos, C. & Kallioras, A. (2022). Participatory groundwater modelling for managed aquifer recharge as a tool for water resources management of a coastal aquifer in Greece. Hydrgeol. J. 30, 1, pp. 37–58. DOI: 10.1007/s10040-021-02427-8
  56. Qiu, Y., da Silva Rocha Paz, I., Chen, F., Versini, P. A., Schertzer, D. & Tchiguirinskaia, I. (2020). Space variability of hydrological responses of Nature-Based Solutions and the resulting uncertainty. Hydrology and Earth System Sciences Discussions, 1-34. DOI:10.5194/hess-2020-468
  57. Rosenzweig, B.R., Cantis, H., Kim, Y., Cohn, A., Grove, K., Brock, J., Yesuf, J., Mistry, P., Welty, C., McPhearson, T., Sauer, J. & Chang, H. (2021). The value of urban flood modeling. Earth’s Future 9, e2020EF001739. DOI:10.1029/2020EF001739.
  58. Sharifi, A., Beris, A.T., Javidi, A.S., Nouri, M., Lonbar, A.G. & Ahmadi, M. (2024). Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Advanced Engineering Informatics, 61, 102485. DOI:10.1016/j.aei.2024.102485.
  59. Sharma, S., Lee, B. S., Nicholas, R. E., & Keller, K. (2021). A safety factor approach to designing urban infrastructure for dynamic conditions. Earth's Future, 9, 12, e2021EF002118. DOI:10.1029/2021EF002118.
  60. She, L. & You, X.Y. (2019). A dynamic flow forecast model for urban drainage using the coupled artificial neural network. Water Resour. Manag. 3, pp. 3143–3153. DOI:10.1007/s11269-019-02294-9.
  61. Shi, B., Catsamas, S., Kolotelo, P., Wang, M., Lintern, A., Jovanovic, D. & McCarthy, D. T. (2021). A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors, 21, 9, 3056. DOI:10.3390/s21093056.
  62. Szeląg, B., (2013). Influence of the Hydrogramme Shape on the Capacity and Selection of Drains of a Small Retention Reservoir. University of Technology, Kielce. PhD thesis.
  63. Szeląg, B., Kiczko, A. & Dąbek, L. (2016). Sensitivity and uncertainty analysis of hydrodynamic model (SWMM) for storm water runoff forecating in an urban basin – A case study, Ochr. Sr., 38, pp. 15–22.
  64. Szeląg, B., Majerek, D., Kiczko, A., Łagód, G., Fatone, F. & McGarity, A. (2022a). Analysis of sewer network performance in context of modernization: modeling, sensitivity, uncertainty analysis. Journal of Water Resources Planning and Management. 148: pp[. 1– 12. DOI:10.1061/(ASCE)WR.1943–5452.0001610.
  65. Szeląg, B., Suligowski, R., De Paola, F., Siwicki, P., Majerek, D. & Łagód, G. (2022b). Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: case study. Environ. Model. Softw. 150, 105335 DOI:10.1016/j.envsoft.2022.105335.
  66. Tabuchi, J.-P., Blanchet, B. & Rocher, V. (2020). Integrated Smart Water Management of the sanitation system of the Greater Paris region. Water International, 45, 6, pp. 574–603. DOI:10.1080/02508060.2020.1830584.
  67. Tao, D. Q., Pleau, M., Akridge, A., Fradet, O., Grondin, F., Laughlin, S. & Shoemaker, L. (2020). Analytics and Optimization Reduce Sewage Overflows to Protect Community Waterways in Kentucky. INFORMS Journal on Applied Analytics, 50, 1, pp. 7–20. DOI:10.1287/inte.2019.1022.
  68. Ursino, N. (2015). Risk analysis of sustainable urban drainage and irrigation. Advances in Water Resources, 83, pp. 277–284. DOI:10.1016/j.advwatres.2015.06.011.
  69. Vojinovic, Z., Kecman, V. & Babovic, V. (2003). Hybrid Approach for Modeling Wet Weather Response in Wastewater Systems. Journal of Water Resources Planning and Management, 129, 6. DOI:10.1061/(ASCE)0733-9496(2003)129:6(511).
  70. Wałek, G. (2019). The influence of roads on the formation of surface runoff in the urbanized area on the example of the Silnica River catchment area in Kielce. Jan Kochanowski University Press, Kielce. (in Polish).
  71. Wałęga, A., Cupak, A., Michalec, B. & Wachulec, K. (2013). The influence of physical and geographical catchment parameters and precipitation characteristics on the runoff time of concentration. Journal of Civil Engineering, Environment and Architecture, 30, 60, pp. 143–160. DOI:10.7862/rb.2013.44.
  72. Wang X., Kvaal K. & Ratnaweera H. (2019). Explicit and interpretable nonlinear soft sensor models for influent surveillance at a full-scale wastewater treatment plant. J. Process Control, 77, pp. 1-6. 10.1016/j.jprocont.2019.03.005 .
  73. Wawrzyniak, M. & Wdowikowski, M. (2023). Heavy rainfall modeling in an urban catchment area on the example of Szczecin, Gaz, Woda i Technika Sanitarna. pp.22-30. DOI:10.15199/17.2023.7.4.
  74. Willems, P. (2013). Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 496, pp. 166–177. DOI:10.1016/j.jhydrol.2013.05.037.
  75. Wolfs, V. & Willems, P. (2016). Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations. Water Resources Management, 31, 1, pp. 283–298. DOI:10.1007/s11269-016-1524-2.
  76. Wong B. P. & Kerkez B. (2016). Real-time environmental sensor data: an application to water quality using web services. Environmental Modelling and Software 84, pp. 505–517. DOI:10.1016/j.envsoft.2016.07.020.
  77. Wu, Y., She, D., Xia, J., Song, J., Xiao, T. & Zhou, Y. (2023). The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. Journal of Hydrology, 617, 129116. DOI:10.1016/j.jhydrol.2023.129116.
  78. Yang, Y. & Chui, T. F. M. (2020). Modelling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods, Hydrol. And Earth Syst. Sci., 25,11, pp. 5839-5858. DOI:10.5194/hess-2020-460, in review, .
  79. Yao, L., Wei, W. & Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecological Indicators, 60, pp. 893–905. DOI:10.1016/j.ecolind.2015.08.041 10.1016/j.ecolind.2015.08.041.
  80. Yao, Y., Li, J., Jiang, Y. & Huang, G. (2023). Evaluating the response and adaptation of urban stormwater systems to changed rainfall with the CMIP6 projections. Journal of Environmental Management, 347, 1, 119135. DOI:10.1016/j.jenvman.2023.119135.
  81. Zawilski, M. & Sakson, G. (2013). Assessment of total suspended solid emission discharged via storm sewerage system from urban areas. OCHRONA SRODOWISKA, 35, 2, pp. 33-40.
  82. Zhang, K., Liu, Y., Deletic, A., McCarthy, D. T., Hatt, B. E., Payne, E. G. Chandrasena, G., Li, Y., Pham, T., Jamali, B., Daly, E., Fletcher, T.D. & Lintern, A. (2021). The impact of stormwater biofilter design and operational variables on nutrient removal-a statistical modelling approach. Water Research, 188, 116486.
  83. Zhou, Q. (2014). A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water, 6, 4, pp. 976–992. DOI:10.3390/w6040976.

Date

08.09.2025

Type

Article

Identifier

DOI: 10.24425/aep.2025.156009

DOI

10.24425/aep.2025.156009

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×