Szczegóły

Tytuł artykułu

Cadmium and Lead Accumulation in Two Littoral Plants of Five Lakes in Poznan, Poland

Tytuł czasopisma

Acta Biologica Cracoviensia s. Botanica

Rocznik

2010

Wolumin

vol. 52

Numer

No 2

Autorzy

Wydział PAN

Nauki Biologiczne i Rolnicze

Wydawca

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Data

2010

Identyfikator

DOI: 10.2478/v10182-010-0024-6 ; ISSN 0001-5296 ; eISSN 1898-0295

Źródło

Acta Biologica Cracoviensia s. Botanica; 2010; vol. 52; No 2

Referencje

N. Ait Ali (2004), Tolerance and bioaccumulation of cadmium by <i>Phragmites australis grown</i> in the presence of elevated concentrations of cadmium, copper, and zinc, Aquatic Botany, 80, 163, doi.org/10.1016/j.aquabot.2004.08.008 ; Anders P. (2002), Wielkopolska - Słownik Krajoznawczy. ; Bose S. (2008), Chemical fractionation and translocation of heavy metals in <i>Canna indica</i> L. grown on industrial waste amended soil, Journal of Hazardous Materials, 160, 187, doi.org/10.1016/j.jhazmat.2008.02.119 ; Buczkowski R. (2002), Metody Remediacji Gleb Zanieczyszczonych Metalami Cięźkimi. ; Buczyńska E. (1995), Stan czystości Jeziora Rusałka. ; Das P. (1997), Studies on cadmium toxicity in plants: a Review, Environmental Pollution, 98, 1, 29, doi.org/10.1016/S0269-7491(97)00110-3 ; Demirezen D. (2004), Accumulation of heavy metals in <i>Typha angustifolia</i> (L.) and <i>Potamogeton pectinatus</i> (L.) living in Sultan Marsh (Kayseri, Turkey), Chemosphere, 56, 685, doi.org/10.1016/j.chemosphere.2004.04.011 ; Fillion M. (2009), Performance of <i>Salix viminalis</i> and <i>Populus nigra</i> x <i>Populus maximowiczii</i> in short rotation intensive culture under high irrigation, Biomass and Bioenergy, 33, 1271, doi.org/10.1016/j.biombioe.2009.05.011 ; Fourest E. (1992), Heavy metal biosorption by fungal mycelia by-products: mechanism and influence of pH, Applied Microbiology Biotechnology, 37, 399, doi.org/10.1007/BF00211001 ; Hermle S. (2006), Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions, Environmental Pollution, 144, 703, doi.org/10.1016/j.envpol.2005.12.040 ; Holan Z. (1994), Biosorption of lead and nickel by biomass of marine algae, Biotechnological Bioengineering, 43, 1001, doi.org/10.1002/bit.260431102 ; January M. (2008), Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can <i>Helianthus annuus</i> hyperaccumulate multiple heavy metals?, Chemosphere, 70, 531, doi.org/10.1016/j.chemosphere.2007.06.066 ; Kabata-Pendias A. (1999), Biogeochemia Pierwiastków Śladowych. ; Klosowski S. (2001), Kronika Miasta Poznania. ; Kufel I. (1980), Chemical composition of reed (<i>Phragmites australis</i> Trin. ex Steudel) in relation to the substratum, Bulletin of Polish Academy of Sciences, 28, 563. ; Lewander M. (1996), Macrophytes as indicators of bioavailable Cd, Pb and Zn flow in the river Pszemsza, Katowice region, Applied Geochemistry, 11, 169, doi.org/10.1016/0883-2927(95)00074-7 ; Liu J. (2007), Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland, Journal of Hazardous Materials, 147, 947, doi.org/10.1016/j.jhazmat.2007.01.125 ; Maluśkiewicz P. (2000), Poznań - Malta. ; Mazej Z. (2009), Trace element accumulation and distribution in four aquatic macrophytes, Chemosphere, 74, 642, doi.org/10.1016/j.chemosphere.2008.10.019 ; Mleczek M. (2009), Accumulation of selected heavy metals by different genotypes of Salix, Environmental and Experimental Botany, 66, 289, doi.org/10.1016/j.envexpbot.2009.02.010 ; O'Neill P. (1998), Environmental Chemistry. ; Peverly J. (1995), Growth and trace metal absorption by <i>Phragmites australis</i> in wetlands constructed for landfill leachate treatment, Ecological Engineering, 5, 21, doi.org/10.1016/0925-8574(95)00018-E ; Polakowska M. (1976), Rośliny Wodne. Atlas. ; Pułyk M. (1996), Stan czystości jezior badanych w latach 1990-1995 w województwie poznańskim Państwowa Inspekcja Ochrony Środowiska. ; Roos M. (1994), Sources and Forms of Potentially Toxic Metals in Soil-Plant Systems. ; Southichak B. (2006), <i>Phragmites australis</i>: A novel bioabsorbent for the removal of heavy metals from aqueous solution, Water Research, 40, 2295, doi.org/10.1016/j.watres.2006.04.027 ; Stoltz E. (2002), Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environmental and Experimental Botany, 47, 271, doi.org/10.1016/S0098-8472(02)00002-3 ; Volesky B. (2000), Detoxification of metal-bearing effluents biosorption for the next century, Hydrometallurgy, 59, 203, doi.org/10.1016/S0304-386X(00)00160-2 ; Vymazal J. (2009), Trace elements in Phragmitres australis growing in constructed wetlands for treatment of municipal wastewater, Ecological Engineering, 35, 303, doi.org/10.1016/j.ecoleng.2008.04.007 ; Vymazal J. (2007), Trace elements in <i>Phragmites australis</i> and <i>Phalaris arundinacea</i> growing in constructed and natural wetlands, Science of the Total Environment, 380, 154, doi.org/10.1016/j.scitotenv.2007.01.057 ; Yang X. (2005), Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation, Journal of Trace Elements in Medicine and Biology, 18, 339, doi.org/10.1016/j.jtemb.2005.02.007
×