Relationship Between Aphid Infestation and Chlorophyll Content in Fabaceae Species

Journal title

Acta Biologica Cracoviensia s. Botanica




vol. 52


No 2


Divisions of PAS

Nauki Biologiczne i Rolnicze


Biological Commission of the Polish Academy of Sciences – Cracow Branch




DOI: 10.2478/v10182-010-0026-4 ; ISSN 0001-5296 ; eISSN 1898-0295


Acta Biologica Cracoviensia s. Botanica; 2010; vol. 52; No 2


Apablaza H. (1967), Effect of three species of grain aphids (Homoptera: Aphididae) reared on wheat, oats or barley and transferred as adult to wheat, oats and barley, Entomologia Experimentalis et Applicata, 10, 358, ; Barnett O. (1986), Viruses Infecting Forage Legumes, 625. ; Burd J. (1996), Changes in chlorophyll <i>a</i> fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae), Journal of Economic Entomology, 89, 1332. ; Cabrera H. (1994), Metabolic changes in barley seedlings at different aphid infestation levels, Phytochemistry, 35, 317, ; Costa C. (2001), Inter-relationships of applied nitrogen, SPAD, and yield of leafy and non-leafy maize genotypes, Journal of Plant Nutrition, 24, 1173, ; Cuperus C. (1982), Economic injury levels and economic thresholds for pea aphid, <i>Acyrthosiphon pisum</i> (Harris) on alfalfa, Crop Science, 1, 453. ; Fanizza G. (1991), Leaf greenness measurements to evaluate water stressed genotypes in, Vitis vififera. Euphytica, 55, 27, ; Farag M. (2007), Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of <i>Medicago trancatula</i> using HPLC-UV-ESI-MS and GC-MS, Phytochemistry, 68, 342, ; Garlinge J. (1998), Crop variety sowing guide for Western Australia, Bulletin of Agriculture for Western Australia, 4341, 214. ; Girma M. (1998), <i>Sorghum</i> germplasm tolerant to greenbug (Homoptera: Aphididae) feeding damages measured by reduced chlorophyll loss, Journal of the Kansas Entomological Society, 71, 108. ; Goławska S. (2007), Deterrence and toxicity of plant saponins for the pea aphid, Acyrthosiphon pisum Harris. Journal of Chemical Ecology, 33, 1598, ; Goławska S. (2008), Effect of alfalfa saponins and flavonoids on pea aphid, Entomologia Experimentalis et Applicata, 128, 147, ; Goławska S. (2006), Effect of low and high-saponin of alfalfa on pea aphid, Journal of Insect Physiology, 52, 737, ; Haile F. (1999), Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury, Environmental Entomology, 28, 787. ; Heng-Moss T. (2003), Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines, Plant Resistance, 96, 475. ; IAGC (THE INTERNATIONAL APHID GENOMICS CONSORTIUM). 2010. Genome sequence of the pea aphid <i>Acyrthosiphon pisum. Plos Biology</i> 8(2): e1000313. doi:10.1371/journal.pbio.1000313 ; Janave M. (1997), Enzymatic degradation of chlorophyll in cavendish bananas: In vitro evidence for two independent degradative pathways, Plant Physiology and Biochemistry, 35, 837. ; Jones R. (1991), Further studies on cucumber mosaic virus infection of narrow-leafed lupin (<i>Lupinus angustifolius</i>): seed-borne infection, aphid transmission, spread and effects on grain yield, Annals of Applied Biology, 118, 319, ; Lawson T. (2001), Photosynthetic responses to elevated CO<sub>2</sub> and ozone in field-grown potato (<i>Solanum tuberosum</i>), Journal of Plant Physiology, 158, 309, ; Livingston A. (1980), Comparison of carotenoid storage stability in alfalfa leaf protein (Pro-Xan) and dehydrated meals, Journal of Agriculture and Food Chemistry, 28, 652, ; Ni X. (2001), <i>In vitro</i> enzymatic chlorophyll catabolism in wheat elicited by cereal aphid feeding, Entomologia Experimentalis et Applicata, 101, 159, ; Ni X. (2002), Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding, Entomologia Experimentalis et Applicata, 105, 43, ; Nozzolillo C. (1997), Alfalfa leaf saponins and insects resistance, Journal of Chemical Ecology, 23, 995, ; Oleszek W. (1999), Recent Advances in Allelopathy. A science for the Future, 167. ; Oleszek W. (2000), Phytochemicals as Bioactive Agents, 167. ; Oleszek W. (1992), Zanhic acid tridesmoside and other dominant saponins from alfalfa (Medicago sativa L.) aerial parts, Journal of Agriculture and Food Chemistry, 40, 191, ; Ollivier M. (2010), Comparative analysis of the Acyrthosiphon pisum genome and EST-based gene sets from other aphid species, Insect Molecular Biology, 19, 33, ; Osbourn A. (2003), Molecules of interest, saponins in cereals, Phytochemistry, 62, 1. ; Rafi M. (1996), Interaction between Russian wheat aphid (Homoptera: Aphididae) and resistant and susceptible genotypes of wheat, Journal of Economic Entomology, 89, 239. ; Richardson A. (2002), An evaluation of noninvasive methods to estimate foliar chlorophyll content, New Phytologist, 153, 185, ; Samdur M. (2000), Field evaluation of chlorophyll meter for screening groundnut (<i>Arachis hypogaea</i> L.) genotypes tolerant to iron-deficiency chlorosis, Current Science Bangalore, 79, 211. ; Statsoft INC. 2003. Statistica (Data Analysis Software System), version 06. <a target="_blank" href=''></a> ; Stochmal A. (2001a), Alfalfa (<i>Medicago sativa</i> L.) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts, Journal of Agriculture and Food Chemistry, 49, 753, ; Stochmal A. (2001b), Acylated apigenin glycosides from alfalfa (<i>Medicago sativa</i> L.) var. Artal, Phytochemistry, 57, 1223, ; Szynkarczyk S. (2001), Aphids and Other Homopterous Insects, 121.