Details Details PDF BIBTEX RIS Title Modelling of the microstructure and properties in the length scales varying from nano- to macroscopic Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2010 Volume 58 Issue No 2 Authors K. Kurzydlowski Divisions of PAS Nauki Techniczne Coverage 217-226 Date 2010 Identifier DOI: 10.2478/v10175-010-0021-7 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 2; 217-226 References R. Sot, "Properties of crystal networks of the chosen aluminides determined ab initio", <i>PhD Thesis</i>, Warsaw University of Technology, Warsaw, 2006, (in Polish). ; T. Wejrzanowski, "Modelling of the influence of grain size heterogenity on their growth in the monophase polycrystal materials", <i>PhD Thesis</i>, Warsaw University of Technology, Warsaw, 2006 (in Polish). ; P. Spiewak, "Modelling of properties of point defects and their clusters in dislocation - free single crystal germanium", <i>PhD Thesis</i>, Warsaw University of Technology, Warsaw, 2009. ; R. Dobosz, "Influence of grain boundaries on plastic resistivity of polycrystal nanomaterials", <i>PhD Thesis</i>, Warsaw University of Technology, Warsaw, 2010, (in Polish). ; M. Muzyk, "Modelling of grain boundary structure and properties in aluminium and its alloys", <i>PhD Thesis</i>, Warsaw University of Technology, to be published, (in Polish). ; Sot R. (2005), Atomic modelling of point defects in B2-RuAl, Materials Science - Poland, 23, 407. ; Muzyk M. (2010), Density functional theory calculations of properties of point defects in B2-NiAl intermetallic compound, Scripta Materialia, 62. ; Sot R. (2007), First principles study of Al(100) twisted interfaces, Solid State Phenomena, 129, 131. ; Spychalski W. (2002), Computer study of inter- and intra-granular surface crack in brittle polycrystal, Materials Characterization, 49, 45. ; Wróbel J. (2009), Mechanical and thermodynamical properties of X-La intermetallic compounds on the basis of computations from first principles (X=Al, Mg), Material Engineering School, 1. ; Schlitz R. (1974), Elastic constants of some MAl<sub>2</sub> single crystals, J. Appl. Phys, 45, 4681. ; Blum V. (2005), Prediction of ordered structures in the bcc binary systems of Mo, Nb, Ta, and W from first-principles search of approximatelly 3,000,000 possible configurations, Phys. Rev, B 72, 020104, doi.org/10.1103/PhysRevB.72.020104 ; Barabash S. (2009), First-principles determination of low-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt, Phys. Rev, B 80, 220201, doi.org/10.1103/PhysRevB.80.220201 ; Kresse G. (1996), Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev, B 54, 11169, doi.org/10.1103/PhysRevB.54.11169 ; Kozubski R. (2010), Atomic ordering in nano-layered FePt: multiscale Monte Carlo simulation, Computational Materials Science, 48. ; Lee M. (2005), Strained Si, SiGe, and Ge channels for high-mobility Metal-Oxide-Semiconductor Field-Effect Transistors, J. Appl. Physics, 97, 011101. ; <i>The International Technology Roadmap for Semiconductors</i> <a target="_blank" href='http://www.itrs.net'>http://www.itrs.net</a> ; Vanhellemont J. (2004), Grown-in lattice defects and diffusion in Czochralski-grown germanium, Defect and Diffusion Forum, 230-232, 149. ; Wachowicz E. (2008), Effect of impurities on grain boundary cohesion in bcc iron, Computational Materials Science, 43, 736. ; Winning M. (2001), Stress induced grain boundary motion, Acta Materialia, 49, 211. ; Lejcek P. (2003), Solute segregation and classification of [100] tilt grain boundaries in α-iron: consequences for grain boundary engineering, Acta Materialia, 51, 3951. ; Zheng C. (2006), Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature, Materials Science & Engineering, A 423, 97. ; Balkowiec A. (2008), Grain boundary mis-orientation effect on intergranular corrosion in aluminium sheets, null, 1. ; Wejrzanowski T. (2007), Grain boundary migration in nanocrystalline iron, Solid State Phenomena, 129, 145. ; Wejrzanowski T. (2006), Modelling of grain growth in nano-polycrystalline materials, null, 1. ; Hall E. (1951), The deformation and ageing of mild steel: II Characteristics of the Lüders deformation, Proc. Phys. Soc, B 64, 742, doi.org/10.1088/0370-1301/64/9/302 ; Petch N. (1953), The cleavage stress of polycrystals, J. Iron. Steel Inst, 174, 25. ; Armstrong R. (1970), The influence of polycrystal grain size on mechanical properties, Advances in Materials Research, 4, 101. ; Berbenni S. (2007), Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials, Computational Materials Science, 39, 96. ; Choi H. (1996), The effect of carbon content on the Hall-Petch parameter in the cold drawn hypereutectoid steels, Scripta Materialia, 34, 857. ; Mercer C. (1996), Hall-Petch relationships in gamma titanium aluminides, Scripta Materialia, 35, 17. ; Mahmudi R. (1995), Grain boundary strengthening in a fine grained aluminium alloy, Scripta Metallurgica et Materialia, 32, 781. ; Hansen N. (2005), Boundary strengthening in undeformed and deformed polycrystals, Materials Science & Engineering, A 409, 39. ; Watanabe I. (2008), Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis, J. Mechanics and Physics of Solids, 56, 1105. ; Balint D. (2008), Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals, Int. J. Plasticity, 24, 2149. ; Dobosz R. (2009), Modelling the influence of the structure on the properties of nanometals, Computer Methods in Materials Science, 9, 1. ; Tjong S. (2004), Nanocrystalline materials and coatings, Materials Science and Engineering, R 45, 1, doi.org/10.1016/j.mser.2004.07.001