Details Details PDF BIBTEX RIS Title Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared p-on-n HgCdTe photodiodes Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2010 Volume 58 Issue No 4 Authors Jóźwikowski, K. ; Kopytko, M. ; Rogalski, A. Divisions of PAS Nauki Techniczne Coverage 523-533 Date 2010 Identifier DOI: 10.2478/v10175-010-0053-z ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 4; 523-533 References Kinch M. (2005), Minority carrier lifetime in p-HgCdTe, J. Electron. Mater, 34, 880, doi.org/10.1007/s11664-005-0036-2 ; Gravrand O. (2009), Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe, J. Electron. Mater, 38, 1733, doi.org/10.1007/s11664-009-0795-2 ; Destefanis G. (1993), Large improvement in HgCdTe photovoltaic detector performances at LETI, J. Electron. Mater, 22, 1027, doi.org/10.1007/BF02817520 ; W. Van Roosbroeck (1950), Theory of the electrons and holes in germanium and other semiconductors, Bell Syst. Tech. J, 29, 560. ; Kurata M. (1982), Numerical Analysis of Semiconductor Devices. ; Gummel H. (1964), A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. Electron Devices, ED 11, 455, doi.org/10.1109/T-ED.1964.15364 ; A. De Mari (1968), An accurate numerical steady-state one-dimensional solution of the p-n junction, Solid State Electronics, 11, 33, doi.org/10.1016/0038-1101(68)90137-8 ; Software: <i>Semicond Devices</i>, Dawn Technologies, Inc. California. ; Software: Apsys, <i>Crosslight Software</i>, Inc. Ontario, Canada. ; Jóźwikowski K. (1999), Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures, Proc. SPIE, 3629, 74, doi.org/10.1117/12.344584 ; Jóźwikowski K. (2000), Computer simulation of non-cooled long wavelength multi-junction (Cd, Hg)Te photodiodes, Infrared Phys.&Technol, 41, 353, doi.org/10.1016/S1350-4495(00)00054-2 ; Jóźwikowski K. (2000), Effect of dislocations on performance of LWIR HgCdTe photodiodes, J. Electron. Mater, 29, 736, doi.org/10.1007/s11664-000-0217-y ; Jóźwikowski K. (2001), Computer modeling of dualband HgCdTe photovoltaic detectors, J. Appl. Phys, 90, 1286, doi.org/10.1063/1.1380989 ; Jóźwikowski K. (2003), Enhanced numerical modelling of non-cooled long-wavelength multi-junction (Cd, Hg)Te photodiodes, IEEE Proc.-Circuits Devices Syst, 150, 65, doi.org/10.1049/ip-cds:20030226 ; Józwikowska A. (2004), Generation-recombination effects in high temperature HgCdTe heterostructure photodiodes, Opto-Electron. Rev, 12, 417. ; Jóźwikowska A. (2005), Generation-recombination effects on dark current in CdTe passivated mid-wave infrared HgCdTe photodiodes, J. Appl. Phys, 98, 014504, doi.org/10.1063/1.1946201 ; Jóźwikowski K. (2009), Generation-recombination effect in high temperature HgCdTe heterostructure non-equilibrium photodiodes, J. Electron. Mater, 38, 1666, doi.org/10.1007/s11664-009-0752-0 ; Blakemore J. (1962), Semiconductor Statistic. ; McIntyre R. (1999), A new look at impact ionisation - Part I: A theory of gain, noise, breakdown probability and frequency response, IEEE Trans. Electron Devices, 46, 1623, doi.org/10.1109/16.777150 ; Kinch M. (2007), Fundamentals of Infrared Detector Materials, doi.org/10.1117/3.741688 ; Rogalski A. (2000), Narrow-Gap Semiconductor Photodiodes. ; Kane E. (1960), Tunneling in InSb, J. Phys. Chem. Solids, 2, 181, doi.org/10.1016/0022-3697(60)90035-4 ; Kane E. (1961), Theory of tunneling, J. Appl. Phys, 32, 83, doi.org/10.1063/1.1735965 ; Duke C. (1969), Tunneling in Solids. ; Adar R. (1992), Spatial integration of direct band-to-band tunnelling currents in general device structures, IEEE Trans. Electron Devices, 39, 976, doi.org/10.1109/16.127459 ; Moll J. (1964), Physics of Semiconductors. ; Grein C. (2008), Modeling of recombination in HgCdTe, J. Electron. Mater, 37, 1415, doi.org/10.1007/s11664-008-0417-4 ; Gilmore A. (2005), Advancements in HgCdTe VLWIR materials, Proc. SPIE, 5783, 223, doi.org/10.1117/12.607604 ; Chuh T. (2004), Recent developments in infrared and visible imaging for astronomy, defense and homeland security, Proc. SPIE, 5563, 19, doi.org/10.1117/12.565661 ; Stobie J. (2004), Update on the imaging sensor for GIFTS, Proc. SPIE, 5543, 293, doi.org/10.1117/12.566494 ; Jones C. (2006), High performance MW and LW IRFPAs made from HgCdTe grown by MOVPE, Proc. SPIE, 6206, 620610, doi.org/10.1117/12.667610 ; Tennant W. (2008), MBE HgCdTe technology: a very general solution to IR detection, described by "Rule 07", a very convenient heuristic, J. Electron. Mater, 37, 1407, doi.org/10.1007/s11664-008-0426-3 ; Shockley W. (1952), Statistics of recombinations of holes and electrons, Phys. Rev, 87, 835, doi.org/10.1103/PhysRev.87.835 ; Nemirovsky Y. (1991), Trapping effect in HgCdTe, J. Vac. Sci. Technol, B9, 1829, doi.org/10.1116/1.585808 ; Schacham S. (1985), Recombination mechanisns in <i>p</i>-type HgCdTe: Freezout and background flux effects, J. Appl. Phys, 57, 2001, doi.org/10.1063/1.334386 ; Harthe J. (1968), The three-dimensional Poole-Frenkel effect, J. Appl. Phys, 39, 4871, doi.org/10.1063/1.1655871 ; Rosencher E. (1984), Transient-current study of field-assisted emission from shallow levels in silicon, Phys. Rev, B 29, 1135, doi.org/10.1103/PhysRevB.29.1135