Details Details PDF BIBTEX RIS Title Robust stability of the new general 2D model of a class of continuous-discrete linear systems Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2010 Volume 58 Issue No 4 Authors Busłowicz, M. Divisions of PAS Nauki Techniczne Coverage 561-565 Date 2010 Identifier DOI: 10.2478/v10175-010-0056-9 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 4; 561-565 References J. Hespanha, <i>Stochastic Hybrid Systems: Application to Communication Networks</i>, Techn. Report, Dept. of Electrical and Computer Eng., California, 2004. ; Johanson K. (2004), Encyklopedia of Life Support Systems. ; Liberzon D. (2003), Switching in Systems and Control. ; Czornik A. (2008), Dynamics of hybrid systems, Sci. Letters Silesian Univ. Techn. Automatics, 151, 31. ; Dymkov M. (2004), Control theory for a class of 2D continuousdiscrete linear systems, Int. J. Control, 77, 9, 847. ; Gałkowski K. (2003), Linear repetitive process control theory applied to a physical example, Int. J. Appl. Math. Comput. Sci, 13, 1, 87. ; Kaczorek T. (2002), Positive 1D and 2D Systems. ; Kaczorek T. (2007), Positive 2D hybrid linear systems, Bull. Pol. Ac.: Tech, 55, 4, 351. ; Kaczorek T. (2008), Positive fractional 2D hybrid linear systems, Bull. Pol. Ac.: Tech, 56, 3, 273. ; Kaczorek T. (2008), Realization problem for positive 2D hybrid systems, COMPEL, 27, 3, 613. ; Kaczorek T. (2007), Determination of positive realization from the state variable diagram of linear hybrid systems, null, 2. ; Kaczorek T. (2008), Solvability of 2D hybrid linear systems - comparison of the different methods, Acta Mechanica et Automatica, 2, 2, 59. ; Sajewski Ł. (2009), Solution of 2D singular hybrid linear systems, Kybernetes, 38, 7/8, 1079, doi.org/10.1108/03684920910976835 ; Bistritz Y. (2003), A stability test for continuous-discrete bivariate polynomials, Proc. Int. Symp. on Circuits and Systems, 3, 682. ; Busłowicz M. (2010), Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Measurement Automation and Monitoring, 56, 2, 133. ; Busłowicz M. (null), Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Measurement Automation and Monitoring. ; Xiao Y. (2001), Stability test for 2-D continuous-discrete systems, null, 4, 3649. ; Xiao Y. (2003), Stability, controllability and observability of 2-D continuous-discrete systems, Proc. Int. Symp. on Circuits and Systems, 4, 468. ; Xiao Y. (2001), Robust Hurwitz-Schur stability conditions of polytopes of 2-D polynomials, null, 4, 3643. ; Guiver J. (1981), On test for zero-sets of multivariate polynomials in noncompact polydomains, Proc. IEEE, 69, 4, 467, doi.org/10.1109/PROC.1981.11992 ; Alefeld G. (1983), Introduction to Interval Computation. ; Białas S. (2002), Robust Stability of Polynomials and Matrices.