Details Details PDF BIBTEX RIS Title Generalization of Vieta's formulae to the fractional polynomials, and generalizations the method of Graeffe-Lobachevsky Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2010 Volume 58 Issue No 4 Authors Białas, S. ; Górecki, H. Divisions of PAS Nauki Techniczne Coverage 625-629 Date 2010 Identifier DOI: 10.2478/v10175-010-0065-8 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 4; 625-629 References Kilbas A. (2006), Theory and Applications of Fractional Differential Equations. ; Miller K. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations. ; Oldham K. (1974), The Fractional Calculus. ; Ostalczyk P. (2008), An Outline of Integro-differential Calculus of Fractional Orders. Theory and Applications in Automatics. ; Bonnet C. (2002), Analysis of fractional delay systems of retarded and neutral type, Automatica, 38, 1133, doi.org/10.1016/S0005-1098(01)00306-5 ; Das S. (2008), Functional fractional calculus for system identification and controls. ; Hartley T. (2002), Dynamics and control of initalized fractional-order systems, Nonlinear Dynam, 29, 201, doi.org/10.1023/A:1016534921583 ; Hwang C. (2006), A numerical algorythm for stability testing of fractional delay systems, Automatica, 42, 825, doi.org/10.1016/j.automatica.2006.01.008 ; Ostalczyk P. (2001), Nyquist characteristics of fractional order integrator, J. Fract. Calculus, 19, 67. ; Kaczorek T. (2008), Practical stability of positive fractional discretetime linear systems, Bull. Pol. Ac.: Tech, 56, 4, 313. ; Busłowicz M. (2008), Stability of linear contonuous-time fractional order systems with delays of the retarded type, Bull. Pol. Ac.: Tech, 56, 4, 319. ; Ruszewski A. (2008), Stability regions of closed loop system with time delay inertial plant of fractional order and fractional order PI controller, Bull. Pol. Ac.: Tech, 56, 4, 329. ; Podlubny I. (1999), Fractional-order systems and PI_Dμ-controllers, IEEE Trans. Automat. Control, 44, 1, 208, doi.org/10.1109/9.739144 ; Raynaud H. (2000), State-space representation for fractional order controllers, Automatica, 36, 1017, doi.org/10.1016/S0005-1098(00)00011-X ; Nowacki P. (1958), Principles of the Theory of Automatic Control Systems. ; Bini D. (1996), Graeffe's, Chebyshev-like, and Cardinal's processes for splitting a polynomial into factors, J. Complexity, 12, 492, doi.org/10.1006/jcom.1996.0030 ; Berezin I. (1962), Methods of Calculus. ; Rahman Q. (2002), Analitic Theory of Polynomials.