Details Details PDF BIBTEX RIS Title Stability of continuous-discrete linear systems described by the general model Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2011 Volume 59 Issue No 2 Authors Kaczorek, T. Divisions of PAS Nauki Techniczne Coverage 189-193 Date 2011 Identifier DOI: 10.2478/v10175-011-0023-0 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 2; 189-193 References Farina L. (2000), Positive Linear Systems; Theory and Applications. ; Kaczorek T. (2002), Positive 1D and 2D Systems, doi.org/10.1007/978-1-4471-0221-2 ; Kaczorek T. (1998), Reachability and minimum energy control of positive 2D continuous-discrete systems, Bull. Pol. Ac.: Tech, 46, 1, 85. ; Kaczorek T. (2007), Positive 2D hybrid linear systems, Bull. Pol. Ac.: Tech, 55, 4, 351. ; Kaczorek T. (2008), Positive fractional 2D hybrid linear systems, Bull. Pol. Ac.: Tech, 56, 3, 273. ; Kaczorek T. (2008), Solvability of 2D hybrid linear systems - comparison of the different methods, Acta Mechanica et Automatica, 2, 2, 59. ; Sajewski Ł. (2009), Solution of 2D singular hybrid linear systems, Kybernetes, 38, 7/8, 1079, doi.org/10.1108/03684920910976835 ; Kaczorek T. (2008), Realization problem for positive 2D hybrid systems, COMPEL, 27, 3, 613. ; Dymkov M. (2004), Control theory for a class of 2D continuous-discrete linear systems, Int. J. Control, 77, 9, 847, doi.org/10.1080/00207170410001726796 ; Gałkowski K. (2003), Linear repetitive process control theory applied to a physical example, Int. J. Appl. Math. Comput. Sci, 13, 1, 87. ; Bistritz Y. (2003), A stability test for continuous-discrete bivariate polynomials, Proc. Int. Symp. on Circuits and Systems, 3, 682. ; Busłowicz M. (2011), Improved stability and robust stability conditions for a general model of scalar continuous-discrete linear systems, Measurement Automation and Monitoring, 2, 188. ; Busłowicz M. (2010), Stability and robust stability conditions for a general model of scalar continuous-discrete linear systems, Measurement Automation and Monitoring, 2, 133. ; Busłowicz M. (2010), Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bull. Pol. Ac.: Tech, 58, 4, 567. ; Xiao Y. (2001), Stability test for 2-D continuous-discrete systems, Proc. 40th IEEE Conf. on Decision and Control, 4, 3649. ; Xiao Y. (2003), Stability, controllability and observability of 2-D continuous-discrete systems, Proc. Int. Symp. on Circuits and Systems, 4, 468. ; Xiao Y. (2001), Robust Hurwitz-Schur stability conditions of polytopes of 2-D polynomials, Proc. 40th IEEE Conf. on Decision and Control, 4, 3643. ; Kaczorek T. (2009), Stability of positive continuous-time linear systems with delays, Bull. Pol. Ac.: Tech, 57, 4, 395. ; Narendra K. (2010), Hurwitz stability of Metzler matrices, IEEE Trans. Autom. Control, 55, 6, 1484, doi.org/10.1109/TAC.2010.2045694