Details

Title

Pole-free vs. stable-pole designs of minimum variance control for nonsquare LTI MIMO systems

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2011

Volume

59

Issue

No 2

Authors

Divisions of PAS

Nauki Techniczne

Coverage

201-211

Date

2011

Identifier

DOI: 10.2478/v10175-011-0025-y ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 2; 201-211

References

Bańka S. (2006), Efficient algorithm for designing multipurpose control systems for invertible and right-invertible MIMO LTI plants, Bull. Pol. Ac.: Tech, 54, 4, 429. ; Latawiec K. (2004), The Power of Inverse Systems in Linear and Nonlinear Modeling and Control. ; R.A.J. de Vries, "Robust control through signal constraints with application to predictive control", <i>PhD Thesis</i>, Delft University of Technology, Delft, 2006. ; Borisson U. (1979), Self-tuning regulators for a class of multivariable systems, Automatica, 15, 2, 209, doi.org/10.1016/0005-1098(79)90071-2 ; Keviczky L. (1977), Self-tuning minimum variance control of MIMO discrete time systems, Automatic Control Theory and Applications, 5, 1, 11. ; Koivo H. (1980), A multivariable self-tuning controller, Automatica, 16, 4, 351, doi.org/10.1016/0005-1098(80)90020-5 ; Moir T. (1986), Weighted minimum variance controller for nonsquare multivariable systems, IEEE Trans. on Automatic Control, 31, 10, 976, doi.org/10.1109/TAC.1986.1104146 ; Åström K. (1970), Introduction to Stochastic Control Theory. ; Åström K. (1973), On self-tuning regulators, Automatica, 9, 2, 185, doi.org/10.1016/0005-1098(73)90073-3 ; Bitmead R. (1990), Adaptive Optimal Control: The Thinking Man's GPC. ; Camacho E. (2004), Model Predictive Control. ; Clarke D. (1989), Properties of generalized predictive control, Automatica, 25, 6, 859, doi.org/10.1016/0005-1098(89)90053-8 ; Cychowski M. (2009), Robust Model Predictive Control. ; Demircioğlu H. (1992), Multivariable continuous-time generalized predictive control (MCGPC), Automatica, 28, 4, 697, doi.org/10.1016/0005-1098(92)90031-A ; W.P. Hunek, "Control zeros for continuous-time LTI MIMO systems and their application in theory of circuits and systems", <i>PhD Thesis</i>, Opole University of Technology, Opole, 2003, (in Polish). ; Latawiec K. (1998), Contributions to Advanced Control and Estimation for Linear Discrete-Time MIMO Systems. ; Maciejowski J. (2002), Predictive Control with Constraints. ; Desoer C. (1974), Zeros and poles of matrix transfer functions and their dynamical interpretation, IEEE Trans. Circuits and Systems, 21, 1, 3, doi.org/10.1109/TCS.1974.1083805 ; Davison E. (1974), Properties and calculation of transmission zeros of linear multivariable systems, Automatica, 10, 6, 643, doi.org/10.1016/0005-1098(74)90085-5 ; Davison E. (1976), Remark on multiple transmission zeros of a system, Automatica, 12, 2, 195, doi.org/10.1016/0005-1098(76)90083-2 ; Francis B. (1975), The role of transmission zeros in linear multivariable regulators, Int. J. Control, 22, 5, 657, doi.org/10.1080/00207177508922111 ; MacFarlane A. (1976), Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory, Int. J. Control, 24, 1, 33, doi.org/10.1080/00207177608932805 ; Kaczorek T. (1999), Control and Systems Theory. ; Rosenbrock H. (1970), State-Space and Multivariable Theory. ; Latawiec K. (2000), Control zeros and nonminimum phase LTI MIMO systems, Annual Reviews in Control (IFAC J.), 24, 1, 105, doi.org/10.1016/S1367-5788(00)00006-7 ; Hunek W. (2009), Minimum variance control of discrete-time and continuous-time LTI MIMO systems - a new unified framework, Control and Cybernetics, 38, 3, 609. ; Latawiec K. (2002), Control zeros for continuoustime LTI MIMO systems, Proc. 8th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 1, 411. ; Latawiec K. (2005), Control zeros and maximum-accuracy/maximum-speed control of LTI MIMO discrete-time systems, Control and Cybernetics, 34, 2, 453. ; Amin M. (1988), Determination of invariant zeros and zero directions of the system S(A, B, C, E), Int. J. Control, 47, 4, 1011, doi.org/10.1080/00207178808906073 ; Karcanias N. (1979), The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach, Int. J. Control, 30, 3, 395, doi.org/10.1080/00207177908922783 ; Porter B. (1978), Invariant zeros and zero-directions of multivariable linear systems with slow and fast modes, Int. J. Control, 28, 1, 81, doi.org/10.1080/00207177808922438 ; Schrader C. (1989), Research on system zeros: a survey, Int. J. Control, 50, 4, 1407, doi.org/10.1080/00207178908953438 ; Shaked U. (1976), The use of zeros and zero-directions in model reduction, Int. J. Control, 23, 1, 113, doi.org/10.1080/00207177608922144 ; Tokarzewski J. (2002), Zeros in Linear Systems: a Geometric Approach. ; Tokarzewski J. (2004), A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy, Int. J. Applied Mathematics and Computer Science, 14, 2, 149. ; Latawiec K. (2003), Control zeros versus transmission zeros intriguingly revisited, Proc. 9th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 1, 449. ; Latawiec K. (2004), A new type of control zeros for LTI MIMO systems, Proc. 10th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 1, 251. ; Hunek W. (2007), Emerging Technologies, Robotics and Control Systems, 2, 133. ; Hunek W. (2008), Towards robust minimum variance control of nonsquare LTI MIMO systems, Archives of Control Sciences, 18, 1, 59. ; Hunek W. (2009), Recent Advances in Control Systems, Robotics and Automation, 1, 168. ; Hunek W. (2008), New Approaches in Automation and Robotics, 373. ; Hunek W. (2006), An inversefree approach to minimum variance control of LTI MIMO systems, Proc. 12th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 1, 373. ; D. Henrion, "Reliable algorithms for polynomial matrices", <i>PhD Thesis</i>, Czech Academy of Sciences, Prague, 1998. ; D. Henrion, <i>Private Communication</i>, 2006. ; T. Kaczorek, <i>Private Communication</i>, 2005. ; Kaczorek T. (2000), Existence and computation of the set of positive solutions to polynomial matrix equations, Int. J. Applied Mathematics and Computer Science, 10, 2, 309. ; Hunek W. (2008), Recent Advances in Control and Automation, Challenging Problems of Science, Control and Automation, 31. ; Davison E. (1983), Some properties of minimum phase systems and ‘squared-down’ systems, IEEE Trans. on Automatic Control, 28, 2, 221, doi.org/10.1109/TAC.1983.1103197 ; Hunek W. (2008), Emerging Technologies, Robotics and Control Systems, 86. ; Latawiec K. (2005), New optimal solvers of MVC-related linear matrix polynomial equations, Proc. 11th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 1, 333. ; Hunek W. (2007), New results in control zeros vs. transmission zeros for LTI MIMO systems, Proc. 13th IEEE IFAC Int. Conf. on Methods and Models in Automation and Robotics, 1, 149. ; Callier F. (2005), Proper feedback compensators for a strictly proper plant by polynomial equations, Int. J. Applied Mathematics and Computer Science, 15, 4, 493. ; Klamka J. (2007), Stochastic controllability of linear systems with delay in control, Bull. Pol. Ac.: Tech, 55, 1, 23. ; Martinez-Alfaro H. (2003), Discrete optimal control systems design using simulated annealing, Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, 3, 2575. ; Rumchev V. (2009), Positive Systems, Vol. 389 of Lecture Notes in Control and Information Sciences, 141. ; Kiyota T. (1995), Minimum energy control for multi-input linear digital systems in z-domain, Proc. American Control Conf, 5, 3907.
×