Details Details PDF BIBTEX RIS Title Impact of control representations on efficiency of local nonholonomic motion planning Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2011 Volume 59 Issue No 2 Authors I. Duleba Divisions of PAS Nauki Techniczne Coverage 213-218 Date 2011 Identifier DOI: 10.2478/v10175-011-0026-x ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 2; 213-218 References Szrek J. (2010), Idea of wheel-legged robot and its control system, Bull. Pol. Ac.: Tech, 58, 1, 43. ; Duleba I. (1998), Algorithms of Motion Planning for Nonholonomic Robots. ; Reister D. (1991), Time-optimal trajectories for mobile robots with two independently driven wheels, Int. J. Robotics Research, 13, 1, 38, doi.org/10.1177/027836499401300103 ; Fernandez C. (1991), A variational approach to optimal nonholonomic motion planning, Proc. IEEE Conf. Robotics and Automat, 1, 680, doi.org/10.1109/ROBOT.1991.131662 ; LaValle S. (2006), Planning Algorithms, doi.org/10.1017/CBO9780511546877 ; Zieliński C. (2010), General specification of multi-robot control system structures, Bull. Pol. Ac.: Tech, 58, 1, 15. ; Tchon K. (2003), Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of jacobian inverse kinematics algorithms, Int. J. Control, 26, 14, 1387, doi.org/10.1080/0020717031000149942 ; Serre J-P. (1964), Lie Algebras and Lie Groups. ; Chow W. (1939), Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Annallen, 117, 1, 98, doi.org/10.1007/BF01450011 ; Strichartz R. (1987), The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Analysis, 72, 2, 320, doi.org/10.1016/0022-1236(87)90091-7 ; Duleba I. (2006), Pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula for affine nonholonomic systems, Systems & Control Letters, 55, 2, 146, doi.org/10.1016/j.sysconle.2005.06.006 ; Spong M. (1989), Robot Dynamics and Control. ; Belaiche A. (1993), Geometry of nonholonomic systems, Robot Motion Planning and Control, Lecture Notes in Control and Information Sciences, 229, 55, doi.org/10.1007/BFb0036071 ; Bertsekas D. (1999), Constrained Optimization and Lagrange Multiplier Methods. ; Nakamura Y. (1991), Advanced Robotics: Redundancy and Optimization.