Details Details PDF BIBTEX RIS Title Numerical solutions of magnetohydrodynamic equations Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2011 Volume 59 Issue No 2 Authors Murawski, K. Divisions of PAS Nauki Techniczne Coverage 219-226 Date 2011 Identifier DOI: 10.2478/v10175-011-0027-9 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 2; 219-226 References Toro E. (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics, doi.org/10.1007/b79761 ; LeVeque R. (2002), Finite-volume Methods for Hyperbolic Problems, doi.org/10.1017/CBO9780511791253 ; Godunov S. (1959), A difference scheme for numerical solution of discontinuos solution of hydrodynamic equations, Math. Sb, 47, 271. ; Stone J. (1992), ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests, Astrophys. J. Suppl. Ser, 80, 791, doi.org/10.1086/191681 ; Murawski K. (1996), Numerical modeling of the solar wind interaction with Venus, Planet. Space Sci, 44, 243, doi.org/10.1016/0032-0633(95)00108-5 ; Murawski K. (2011), Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH, Bull. Pol. Ac.: Tech, 59, 1, 81. ; Woodward P. (1984), The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comp. Phys, 54, 115, doi.org/10.1016/0021-9991(84)90142-6 ; Roe P. (1996), Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math, 56, 57, doi.org/10.1137/S003613999427084X ; Barmin A. (1996), Shockcapturing approach and nonevolutionary solutions in magnetohydrodynamics, J. Comp. Phys, 126, 77, doi.org/10.1006/jcph.1996.0121 ; Brackbill J. (1980), The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comp. Phys, 35, 426, doi.org/10.1016/0021-9991(80)90079-0 ; Murawski K. (2002), Analytical and Numerical Methods for Wave Propagation in Fluids, doi.org/10.1142/9789812776631 ; Brio M. (1988), An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comp. Phys, 75, 400, doi.org/10.1016/0021-9991(88)90120-9 ; Rossmanith J. (2006), An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comp, 28, 1766, doi.org/10.1137/050627022 ; Ziegler U. (2008), The NIRVANA code: Parallel computational MHD with adaptive mesh refinement, Computer Phys. Comm, 179, 227, doi.org/10.1016/j.cpc.2008.02.017 ; Stone J. (2008), Athena: a new code for astrophysical MHD, Astrophysical J. Supplement Series, 178, 137, doi.org/10.1086/588755 ; K.G. Powell, "An approximate Riemann solver for magnetohydrodynamics", <i>ICASE Report</i> 94-24, CD-ROM (1994). ; Zachary A. (1992), A higher-order Godunov method for the equations of ideal magnetohydrodynamics, J. Comp. Phys, 99, 341, doi.org/10.1016/0021-9991(92)90213-I ; Abeele D. (null), Development of a Godunov-type solver for 2D ideal MHD problems, Project Rep, 1. ; Dellar P. (2001), A note on magnetic monopoles and the one dimensional MHD Riemann problem, J. Comp. Phys, 172, 392, doi.org/10.1006/jcph.2001.6815 ; Ch. Helzel, J.A. Rossmanith, and B. Taetz, "An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations", eprint arXiv:1007.2606, (2010). ; Dedner A. (2002), Hyperbolic divergence cleaning for the MHD equations, J. Comp. Phys, 175, 645, doi.org/10.1006/jcph.2001.6961 ; DeVore C. (1991), Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comp. Phys, 92, 142, doi.org/10.1016/0021-9991(91)90295-V ; Lee D. (2009), An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comp. Phys, 228, 4, 952, doi.org/10.1016/j.jcp.2008.08.026 ; Tanaka T. (1993), Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: calculation by a new MHD simulation scheme, J. Geophys. Res, 98, 17251, doi.org/10.1029/93JA01516 ; Tóth G. (2000), The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comp. Phys, 161, 605, doi.org/10.1006/jcph.2000.6519 ; Gombosi T. (1994), Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results, J. Geophys. Res, 99, 21, 525. ; Aslan N. (1999), MHD-A: A fluctuation splitting wave model for planar magnetohydrodynamics, J. Comp. Phys, 153, 437, doi.org/10.1006/jcph.1999.6285 ; Powell K. (1999), A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys, 154, 284, doi.org/10.1006/jcph.1999.6299 ; Janhunen P. (2000), A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comp. Phys, 160, 649, doi.org/10.1006/jcph.2000.6479 ; Vernazza J. (1981), Structure of the solar chromosphere. III - models of the EUV brightness components of the quiet-sun, Astrophysical J, 45, 635, doi.org/10.1086/190731 ; Priest E. (1982), Solar Magnetohydrodynamics. ; Gruszecki M. (2011), Numerical simulations of impulsively excited acoustic-gravity waves in a stellar atmosphere, Acta Phys. Polonica. ; Hollweg J. (1982), On the origin of solar spicules, Astrophys. J, 257, 345, doi.org/10.1086/159993