Szczegóły Szczegóły PDF BIBTEX RIS Tytuł artykułu Models of quantum computation and quantum programming languages Tytuł czasopisma Bulletin of the Polish Academy of Sciences Technical Sciences Rocznik 2011 Wolumin 59 Numer No 3 Autorzy Miszczak, J. Wydział PAN Nauki Techniczne Zakres 305-324 Data 2011 Identyfikator DOI: 10.2478/v10175-011-0039-5 ; ISSN 2300-1917 Źródło Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 3; 305-324 Referencje Bouwmeester D. (2000), The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. ; Ladd T. (2010), Quantum computers, Nature, 464, 45, doi.org/10.1038/nature08812 ; Moore G. (1965), Cramming more components onto integrated circuits, Electronics, 38, 8, 114. ; Intel Corporation, <i>Moores Law: Intel Microprocessor Transistor Count Chart</i> <a target="_blank" href='http://intel.com/pressroom/kits/events/moores_law_40th/'>http://intel.com/pressroom/kits/events/moores_law_40th/</a> ; Feynman R. (1982), Simulating physics with computers, Int. J. Theor. Phys, 21, 6/7, 467, doi.org/10.1007/BF02650179 ; Bennett C. (1984), Quantum cryptography: public key distribution and coin tossing, Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, 1, 175. ; Ekert A. (1991), Quantum cryptography based on Bell's theorem, Phys. Rev. Lett, 67, 661, doi.org/10.1103/PhysRevLett.67.661 ; Einstein A. (1935), Can quantummechanical description of physical reality be considered complete?, Phys. Rev, 47, 10, 777, doi.org/10.1103/PhysRev.47.777 ; J. Bouda, "Encryption of quantum information and quantum cryptographic protocols", <i>Ph.D. Thesis</i>, Faculty of Informatics, Masaryk University, Brno, 2004. ; Ursin R. (2007), Entanglement-based quantum communication over 144 km, Nature Physics, 3, 481, doi.org/10.1038/nphys629 ; Peev M. (2009), The SECOQC quantum key distribution network in Vienna, New J. Physics, 11, 7, 075001, doi.org/10.1088/1367-2630/11/7/075001 ; Shor P. (1994), Algorithms for quantum computation: discrete logarithms and factoring, Proc. 35th Annual Symposium on Foundations of Computer Science, 1, 124, doi.org/10.1109/SFCS.1994.365700 ; Shor P. (1997), Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computers, SIAM J. Computing, 26, 1484, doi.org/10.1137/S0097539795293172 ; Grover L. (1997), Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett, 79, 325, doi.org/10.1103/PhysRevLett.79.325 ; Eisert J. (1999), Quantum games and quantum strategies, Phys. Rev. Lett, 83, 3077, doi.org/10.1103/PhysRevLett.83.3077 ; Meyer D. (2000), AMS Contemporary Mathematics: Quantum Computation and Quantum Information Science, 305. ; Kempe J. (2003), Quantum random walks: an introductory overview, Contemp. Phys, 44, 4, 307, doi.org/10.1080/00107151031000110776 ; Koŝík J. (2003), Two models of quantum random walk, Cent. Eur. J. Phys, 4, 556, doi.org/10.2478/BF02475903 ; Shor P. (2004), Progress in quantum algorithms, Quantum Information Processing, 3, 1, doi.org/10.1007/s11128-004-3878-2 ; S.J. Lomonaco and L. Kauffman, "Search for new quantum algorithms", <i>Tech. Rep.</i> F30602-01-2-0522 <a target="_blank" href='http://www.cs.umbc.edu/lomonaco/qis/DARPA-FINAL-RPT.pdf'>http://www.cs.umbc.edu/lomonaco/qis/DARPA-FINAL-RPT.pdf</a> ; Bernstein E. (1997), Quantum complexity theory, SIAM J. Computing, 26, 5, 1411, doi.org/10.1137/S0097539796300921 ; Fortnow L. (2003), One complexity theorist's view of quantum computing, Theor. Comput. Sci, 292, 3, 597, doi.org/10.1016/S0304-3975(01)00377-2 ; Klarreich E. (2001), Playing by quantum rules, Nature, 414, 244, doi.org/10.1038/35104702 ; Lee C. (2003), Game-theoretic discussion of quantum state estimation and cloning, Phys. Lett, A 319, 5-6, 429, doi.org/10.1016/j.physleta.2003.10.019 ; Ambainis A. (2007), Quantum walk algorithm for element distinctness, SIAM J. Computing, 37, 210, doi.org/10.1137/S0097539705447311 ; Childs A. (2005), Quantum algorithms for subset finding, Quantum. Inf. Comput, 5, 593. ; Childs A. (2004), Spatial search by quantum walk, Phys. Rev, A 70, 2. ; Childs A. (2009), Universal computation by quantum walk, Phys. Rev. Lett, 102, 18, 180501, doi.org/10.1103/PhysRevLett.102.180501 ; Hines A. (2007), Quantum walks, quantum gates, and quantum computers, Phys. Rev, A 75, 6, 062321. ; Ambainis A. (2003), Quantum walks and their algorithmic applications, Int. J. Quant. Inf, 1, 507, doi.org/10.1142/S0219749903000383 ; Santha M. (2008), Quantum walk based search algorithms, 5th Theory and Applications of Models of Computation, 4978, 31, doi.org/10.1007/978-3-540-79228-4_3 ; Venegas-Andraca S. (2010), Introduction to special issue: physics and computer science - quantum computation and other approaches, Math. Struct. Comp. Sci, 20, 6, 995, doi.org/10.1017/S0960129510000423 ; Mosca M. (2011), Handbook of Natural Computing. ; Childs A. (2010), Quantum algorithms for algebraic problems, Rev. Mod. Phys, 82, 1, 1, doi.org/10.1103/RevModPhys.82.1 ; Papadimitriou C. (1994), Computational Complexity. ; Cook S. (1973), Time-bounded random access machines, Proc. Forth Annual ACM Symposium on Theory of Computing, 1, 73. ; Shepherdson J. (1963), Computability of recursive functions, J. ACM, 10, 2, 217, doi.org/10.1145/321160.321170 ; Vollmer H. (1999), Introduction to Circuit Complexity, doi.org/10.1007/978-3-662-03927-4 ; Church A. (1936), An unsolvable problem of elementary number theory, American J. Mathematics, 58, 345, doi.org/10.2307/2371045 ; Abelson H. (1996), Structure and Interpretation of Computer Programs. ; Mitchell J. (2003), Concepts in Programming Languages. ; Deutsch D. (1985), Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond, A 400, 97, doi.org/10.1098/rspa.1985.0070 ; Bohm C. (1964), On a family of Turing machines and the related programming language, ICC Bull, 3, 187. ; S. Aaronson and G. Kuperberg, "Complexity Zoo" <a target="_blank" href='http://qwiki.stanford.edu/index.php/Complexity_Zoo'>http://qwiki.stanford.edu/index.php/Complexity_Zoo</a> ; Yao A. (1993), Quantum circuit complexity, Proc. 34<sup>th</sup> IEEE Symposium on Foundations of Computer Science, 1, 352. ; Nishimura H. (2002), Computational complexity of uniform quantum circuit families and quantum Turing machines, Theor. Comput. Sci, 276, 147, doi.org/10.1016/S0304-3975(01)00111-6 ; Vazirani U. (2002), A survey of quantum complexity theory, Proc. Sympos. Appl. Math, 1, 58. ; Garey M. (1979), Computers and Intractability: a Guide to the Theory of NP-Completeness. ; U. Zwick, "Scribe notes of the course Boolean circuit complexity" <a target="_blank" href='http://www.cs.tau.ac.il/~zwick/scribe-boolean.html'>http://www.cs.tau.ac.il/~zwick/scribe-boolean.html</a> ; Hirvensalo M. (2001), Quantum computing, doi.org/10.1007/978-3-662-04461-2 ; Deutsch D. (1989), Quantum computational networks, Proc. R. Soc. Lond, A 425, 73, doi.org/10.1098/rspa.1989.0099 ; Toffoli T. (1981), Bicontinuous extension of reversible combinatorial functions, Math. Syst. Theory, 14, 13, doi.org/10.1007/BF01752388 ; Nielsen M. (2000), Quantum Computation and Quantum Information. ; Barenco A. (1995), Elementary gates for quantum computation, Phys. Rev, A 52, 3457, doi.org/10.1103/PhysRevA.52.3457 ; Deutsch D. (1937), Universality in quantum computation, Proc. R. Soc. Lond, 1, 449. ; Shende V. (2004), Minimal universal two-qubit controlled-NOT-based circuits, Phys. Rev, A 69, 062321, doi.org/10.1103/PhysRevA.69.062321 ; Möttönen M. (2004), Quantum circuits for general multiqubit gates, Phys. Rev. Lett, 93, 13, 130502, doi.org/10.1103/PhysRevLett.93.130502 ; Vartiainen J. (2004), Efficient decomposition of quantum gates, Phys. Rev. Lett, 92, 177902, doi.org/10.1103/PhysRevLett.92.177902 ; Aaronson S. (2004), Improved simulation of stabilizer circuits, Phys. Rev, A 70, 5, 052328, doi.org/10.1103/PhysRevA.70.052328 ; Knill E. (1996), Conventions for quantum pseudocode, Tech. Rep. ; B. Ömer, "Structured quantum programming", <i>Ph.D. Thesis</i>, Vienna University of Technology, Vienna, 2003. ; Nagarajan R. (2007), Simulating and compiling code for the sequential quantum random access machine, Electronic Notes in Theoretical Computer Science, 170, 101, doi.org/10.1016/j.entcs.2006.12.014 ; Cleve R. (1996), Schumacher's quantum data compression as a quantum computation, Phys. Rev, A 54, 4, 2636, doi.org/10.1103/PhysRevA.54.2636 ; Cormen T. (2001), Introduction to Algorithms. ; Svore K. (2004), Toward a software architecture for quantum computing design tools, null, 1. ; Svore K. (2006), A layered software architecture for quantum computing design tools, Computer, 39, 1, 74, doi.org/10.1109/MC.2006.4 ; S. Bettelli, "Toward an architecture for quantum programming", <i>Ph.D. Thesis</i>, Università di Trento, Trente, 2002. ; Grover L. (1998), Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett, 80, 4329, doi.org/10.1103/PhysRevLett.80.4329 ; M. Mosca, "Quantum computer algorithms", <i>Ph.D. Thesis</i>, Wolfson College, University of Oxford, Oxford, 1999. ; Bennett C. (1992), Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett, 69, 2881, doi.org/10.1103/PhysRevLett.69.2881 ; Brassard G. (2005), Quantum pseudotelepathy, Found. Phys, 35, 1877, doi.org/10.1007/s10701-005-7353-4 ; Bacon D. (2010), Recent progress in quantum algorithms, Commun. ACM, 53, 2, 84, doi.org/10.1145/1646353.1646375 ; Knill E. (2002), Encyclopedia of Mathematics, Supplement. ; Bettelli S. (2003), Toward an architecture for quantum programming, Eur. Phys. J, D 25, 2, 181. ; Mauerer W. (2005), Master's Thesis. ; H. Mlnařík, "Operational semantics and type soundness of quantum programming language LanQ", <i>Ph.D. Thesis</i>, Masaryk University, Brno, 2007. ; Mlnařík H. (2008), Semantics of quantum programming language LanQ, Int. J. Quant. Inf, 6, 1, Supp., 733, doi.org/10.1142/S0219749908004031 ; Gay S. (2006), Quantum programming languages: survey and bibliography, Math. Struct. Comput. Sci, 16, 4. ; Unruh D. (2006), Quantum programming languages, Informatik - forschung und entwicklung, 21, 1-2, 55, doi.org/10.1007/s00450-006-0012-y ; Rüdiger R. (2007), Quantum programming languages: an introductory overview, Comput. J, 50, 2, 134, doi.org/10.1093/comjnl/bxl057 ; Ömer B. (1998), Master's Thesis. ; B. Ömer, "Quantum programming in QCL", <i>Master's Thesis</i>, Vienna University of Technology, Vienna, 2000. ; H. Weimer, <i>The C Library for Quantum Computing and Quantum Simulation Version 1.1.0</i> <a target="_blank" href='http://www.libquantum.de/'>http://www.libquantum.de/</a> ; Miszczak J. (2005), Numerical simulations of mixed states quantum computation, Int. J. Quant. Inf, 3, 1, 195, doi.org/10.1142/S0219749905000748 ; Gawron P. (2010), Extending scientic computing system with structural quantum programming capabilities, Bull. Pol. Ac.: Tech, 58, 1, 77. ; Mlnařík H. (2006), LanQ - Operational semantics of quantum programming language LanQ. ; A. van Tonder (2004), A lambda calculus for quantum computation, SIAM J. Comput, 33, 5, 1109, doi.org/10.1137/S0097539703432165 ; Selinger P. (2004), Towards a quantum programming language, Math. Struct. Comput. Sci, 14, 4, 527, doi.org/10.1017/S0960129504004256 ; Kernighan B. (1988), C Programming Language. ; Deutsch D. (1992), Rapid solution of problems by quantum computation, Proc. Roy. Soc. Lond, A 439, 553, doi.org/10.1098/rspa.1992.0167 ; Wootters W. (1982), A single quantum cannot be cloned, Nature, 299, 802, doi.org/10.1038/299802a0 ; Vedral V. (1996), Quantum networks for elementary arithmetic operations, Phys. Rev, A 54, 147, doi.org/10.1103/PhysRevA.54.147 ; Selinger P. (2004), A brief survey of quantum programming languages, Proc. 7th Int. Symposium on Functional and Logic Programming 2998 of LNCS, 1, 1, doi.org/10.1007/978-3-540-24754-8_1 ; Hughes J. (1989), Why functional programming matters, Comput. J, 32, 2, 98, doi.org/10.1093/comjnl/32.2.98 ; A. Sabry, "Modeling quantum computing in Haskell", <i>ACM SIGPLAN Haskell Workshop</i> 1, CD-ROM (2002). ; Karczmarczuk J. (2003), Structure and interpretation of quantum mechanics: a functional framework, Proc. ACM SIGPLAN Workshop on Haskell, 1, 50, doi.org/10.1145/871895.871901 ; Hutton G. (2007), Programming in Haskell, doi.org/10.1017/CBO9780511813672