Tytuł artykułu

Field synthesis for the optimal treatment planning in Magnetic Fluid Hyperthermia

Tytuł czasopisma

Archives of Electrical Engineering




vol. 61


No 1 March


Słowa kluczowe

evolutionary algorithms ; finite element analysis ; magnatic fluid hyperthermia ; optimal synthesis ; coupled fields

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences




Artykuły / Articles


DOI: 10.2478/v10171-012-0005-3 ; ISSN: 1427-4221 ; eISSN: 2300-2506


Archives of Electrical Engineering; 2012; vol. 61; No 1 March; 57-67


Goya G. (2008), Magnetic Nanoparticles for Cancer Therapy, Curr. Nanosc, 4, 1, ; Rosensweig R. (2002), Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mat, 370, ; Gneveckow U. (2004), Description and characterization of the novel hyperthermia and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia, Med. Phys, 31, 6, 1444, ; P. Di Barba (2010), Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia, IEEE Trans on Magn, 46, 2931, ; P. Di Barba (1997), Optimization of the Loney's solenoid through Quasi-analytical strategies,: a benchmark problem reconsidered, IEEE Trans. Magn, 33, 1864, ; Moroz P. (2002), Magnetically mediated hyperthermia: current status and future directions, Int. J. Hyperthermia, 18, 4, 267, ; Curley S. (2003), New Approaches to the Treatment of Hepatic Malignancies. Radiofrequency Ablation of Malignant Liver Tumors, Annals of Surgical Oncology, 10, 4, 338. ; Candeo A. (2009), Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles, IEEE Trans. Magn, 45, 1654. ; Salloum M. (2009), Enhancements in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern, Int. J. of Hyperthermia, 25. ; Salloum M. (2008), An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia, Int. J. Hyperth, 24, 589, ; P. Di Barba (2010), Coupled Field Synthesis in Magnetic Fluid Hyperthermia, Magnetics, IEEE Transactions on, 47, 5, 914, ; P. Di Barba (2010), Multiobjective Shape Design in Electricity and Magnetism, ; P. Di Barba (2007), Optimization of the HTSC-PM Interaction in Magnetic Bearings by a Multiobjective Design, null, 94. ; P. Di Barba (2009), Optimization of the MIT Field Exciter by a Multiobjective Design, IEEE Trans. Magn, 45, 3, 1530, ; Binns K. (1992), The Analytical and Numerical Solution of Electric and Magnetic Fields. ; Carslaw H. (1959), Conduction of heat in solids. ; Pennes H. (1948), Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol, 85, 5. ; Preston T. (1982), Solution of 3-Dimensional eddy current problems: the T-ω method, IEEE Trans. Magn, 18, 486, ; Biro O. (1993), Computation of 3-D magnetostatic fields using a reduced scalar potential, IEEE Trans. Magn, 29, 1329, ; <a target="_blank" href=''></a> ; Lang J. (1999), Impact of nonlinear heat transfer on temperature control in regional hyperthermia, IEEE Trans. Biom. Eng, 46, 1129, ; P. Di Barba (null), Synthesizing Distributions of Magnetic Nanoparticles for Clinical Hyperthermia, IEEE Trans. Magn. ; Deb K. (2002), A fast and elitist multiobjective genetic algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions on, 6, 2, 182, ; Hudy W. (2011), Selection of control parameters in a control system with a DC electric series motor using evolutionary algorithm, Archives of Electrical Engineering, 60, 3, 231,