Details

Title

Starch gelatinisation in Couette-Taylor flow apparatus

Journal title

Chemical and Process Engineering

Yearbook

2011

Issue

No 4 December

Authors

Keywords

starch gelatinisation ; Couette-Taylor flow ; computer simulation

Divisions of PAS

Nauki Techniczne

Coverage

267-279

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0021-7 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2011; No 4 December; 267-279

References

Baks T. (2007), Comparison of methods to determine the degree of gelatinisation for both high and low starch concentrations, Carbohydr. Polym, 67, 481, doi.org/10.1016/j.carbpol.2006.06.016 ; Baks T. (2008), Towards an optimal process for gelatinisation and hydrolysis of highly concentrated starch-water mixtures with alpha-amylasefrom B. licheniformis, J. Cereal Sci, 47, 214, doi.org/10.1016/j.jcs.2007.03.011 ; E. Baruque Filho (2000), Babassu coconut starch liquefaction: an industrial scale approach to improve conversion yield, Bioresource Technol, 75, 49, doi.org/10.1016/S0960-8524(00)00026-2 ; Beleia A. (2006), Modeling of starch gelatinization during cooking of cassava (Manihot esculenta Crantz), LWT-Food Sci. Technol, 39, 400, doi.org/10.1016/j.lwt.2005.02.021 ; Birch G. (1973), Degree of Gelatinisation of Cooked Rice, Die Stark/Starch, 25, 98, doi.org/10.1002/star.19730250308 ; Brandam C. (2003), A original kinetic model for the enzymatic hydrolysis of starch during mashing, Biochem. Eng. J, 13, 43, doi.org/10.1016/S1369-703X(02)00100-6 ; Coufort C. (2005), Flocculation related to local hydrodynamics in a Taylor-Couette reactor and in a jar, Chem. Eng. Sci, 60, 2179, doi.org/10.1016/j.ces.2004.10.038 ; Dluska E. (2010), Regimes of multiple emulsions of W1/O/W2 and O1/W/O2 type in the continuous Couette-Taylor flow contactor, Chem. Eng. Technol, 33, 113, doi.org/10.1002/ceat.200900278 ; Hubacz R. (2010), Starch gelatinization and hydrolysis in the apparatus with Couette-Taylor flow, Inż. Apar. Chem, 2, 55. ; R. van den Einde (2003), Understanding molecular weight reduction of starch during heating -shearing processes, J. Food Sci, 68, 2396, doi.org/10.1111/j.1365-2621.2003.tb07036.x ; Jung W.-M. (2000), Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chem. Eng. Sci, 55, 733, doi.org/10.1016/S0009-2509(99)00395-4 ; Jung W.-M. (2010), Precipitation of calcium carbonate particles by gas-liquid reaction: morphology and size distribution of particles in Couette-Taylor and stirred tank reactors, J. Cryst. Grow, 312, 3331, doi.org/10.1016/j.jcrysgro.2010.08.026 ; Kelder J. (2004), Power-law foods in continuous coiled steriliser, Biotechnol. Prog, 20, 921, doi.org/10.1021/bp0340436 ; Li J.-Y. (2001), Relationships between thermal, rheological characteristics and swelling power for various starch, J. Food Eng, 50, 141, doi.org/10.1016/S0260-8774(00)00236-3 ; Lipatova I. (2006), Mechanical degradation of gelatinised starch upon hydroacoustic treatment, Russian J. Appl. Chem, 79, 1532, doi.org/10.1134/S1070427206090278 ; Matsuka S. (2010), Gelatinization and Enzymatic Saccharification in a Taylor-Couette flow reactor, null. ; Mitrus M. (2010), Modyfikacja skrobi ziemniaczanej metodą ekstruzji, Acta Agrophysica, 16, 1, 101. ; Nelles E. (2000), Maize Starch Biphasic Pasting Curves, J. Cereal Sci, 31, 287, doi.org/10.1006/jcrs.2000.0311 ; Saomoto K. (2010), Dispersion of floating particles in a Taylor vortex flow reactor, J. Chem. Eng. Jpn, 43, 319, doi.org/10.1252/jcej.09We07 ; Sakonidou E. (2003), Mass transfer limitations during starch gelatinization, Carbohydr. Polym, 53, 53, doi.org/10.1016/S0144-8617(03)00010-9 ; Wereley S. (1999), Velocity field for Taylor -Couette flow with an axial flow, Phys. Fluids, 11, 3637, doi.org/10.1063/1.870228 ; Zhu X. (2010), Study of cell seeding on porous poly(D, L-lacticco-glycolic acid) sponge and growth in a Couette-Taylor bioreactor, Chem. Eng. Sci, 65, 2108, doi.org/10.1016/j.ces.2009.12.006

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×