Details

Title

The Fractional derivative rheological model and the linear viscoelastic behavior of hydrocolloids

Journal title

Chemical and Process Engineering

Yearbook

2012

Issue

No 1 March

Authors

Keywords

hydrocolloids ; xanthan gum ; fractional derivative rheological model

Divisions of PAS

Nauki Techniczne

Coverage

141-151

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2012

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-012-0013-2 ; ISSN 0208-6425

Source

Chemical and Process Engineering; 2012; No 1 March; 141-151

References

Choi H. (2009), Steady and dynamic shear rheology of sweet potato starch-xanthan gum mixtures, Food Chem, 116, 638, doi.org/10.1016/j.foodchem.2009.02.076 ; Christianson D. (1982), Food carbohydrates, 399. ; Clark A. (1987), Structural and mechanical properties of biopolymer gels, Adv. Polymer Sci, 83, 157, doi.org/10.1007/BFb0023330 ; Dinzart F. (2009), Improved five-parameter fractional derivative model for elastomers, Arch. Mech, 61, 459. ; Doublier J. (1981), Rheological studies on starch. Flow behaviour of wheat starch pastes, Starch, 33, 415, doi.org/10.1002/star.19810331205 ; Ferry F. (1980), Viscoelastic properties of polymers. ; Fijan R. (2007), Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing, Carbohydrate Polymers, 68, 708, doi.org/10.1016/j.carbpol.2006.08.006 ; Fijan R. (2009), A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing, Carbohydrate Polymers, 76, 8, doi.org/10.1016/j.carbpol.2008.09.027 ; Chr Friedrich (1991), Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30, 151, doi.org/10.1007/BF01134604 ; Chr Friedrich (1993), Mechanical stress relaxation in polymers: Fractional integral model versus fractional differential model, J. Non-Newt. Fluid Mech, 46, 307, doi.org/10.1016/0377-0257(93)85052-C ; Chr Friedrich (1992), Generalized Cole-Cole behavior and its rheological relevance, Rheol. Acta, 31, 309, doi.org/10.1007/BF00418328 ; Chr Friedrich (1994), Linear viscoelastic behavior of complex polymeric materials: A fractional mode representation, Colloid Polym. Sci, 272, 1536, doi.org/10.1007/BF00664721 ; Chr Friedrich (1988), Extension of a model for crosslinking polymer at the gel point, J. Rheol, 32, 235, doi.org/10.1122/1.549971 ; Kilbas A. (2006), Theory and applications of fractional differential equations. ; Kim C. (2006), Rheological properties of rice starch-xanthan gum mixtures, J. Food Eng, 75, 120, doi.org/10.1016/j.jfoodeng.2005.04.002 ; Koroteeva D. (2007), Structural and thermodynamic properties of rice starches with different genetic background: Part 2. Defectiveness of different supramolecular structures in starch granules, Inter. J. Biol. Macromol, 41, 534, doi.org/10.1016/j.ijbiomac.2007.07.005 ; Mandala I. (2003), Effect of preparation conditions and starch-xanthan concentration on gelation process of potato starch systems, Inter. J. Food Prop, 6, 311, doi.org/10.1081/JFP-120017818 ; Mweta D. A., 2009. <i>Physicochemical, functional and structural properties of native Malawian cocoyam and sweetpotato starches.</i> PhD Thesis, The University of The Three State Bloemfontein, South Africa. ; Myszka K. (2004), The role of microbial exo-polysaccharides in food technology, Food. Science. Technology. Quality, 4, 18. ; Oblonšek M. (2003), Rheological studies of concentrated guar gum, Rheol. Acta, 42, 491, doi.org/10.1007/s00397-003-0304-0 ; Rupenthal I. D., 2008. <i>Ocular delivery of antisense oligonucleotides using colloidal carriers: Improving the wound repair after corneal surgery.</i> PhD Thesis, The University of Auckland, New Zealand. ; Siddig M. (2004), Rheological modelling of wormlike micelles systems using fractional viscoelastic model, Suranaree J. Sci. Technol, 11, 132. ; Sikora M. (2003), Interactions between starch from different botanical sources and hydrocolloids, Food. Science. Technology. Quality, 34, 40. ; Sikora M. (2008), Interactions between starch from different botanical sources and non-starchy hydrocolloids, Food. Science. Technology. Quality, 56, 23. ; Sittikijyothin W. (2005), Modelling the rheological behaviour of galactomannan aqueous solutions, Carbohydrate Polymers, 59, 339, doi.org/10.1016/j.carbpol.2004.10.005 ; Zener C. (1948), Elasticity and anelasticity of metals. ; Zupančič A. (2001), Viscoelastic properties of hydrophilic polymers in aqueous dispersions, Acta Chim. Slov, 48, 469.

Editorial Board

Editorial Board

Ali Mesbach, UC Berkeley, USA

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland

Anna Trusek, Wrocław University of Science and Technology, Poland

Bettina Muster-Slawitsch, AAE Intec, Austria

Daria Camilla Boffito, Polytechnique Montreal, Canada

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland

Dorota Antos, Rzeszów University of Technology, Poland

Evgeny Rebrov, University of Warwick, UK

Georgios Stefanidis, National Technical University of Athens, Greece

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland

Johan Tinge, Fibrant B.V., The Netherlands

Katarzyna Bizon, Cracow University of Technology, Poland

Katarzyna Szymańska, Silesian University of Technology, Poland

Marcin Bizukojć, Łódź University of Technology, Poland

Marek Ochowiak, Poznań University of Technology, Poland

Mirko Skiborowski, Hamburg University of Technology, Germany

Nikola Nikacevic, University of Belgrade, Serbia

Rafał Rakoczy, West Pomeranian University of Technology, Poland

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong

Tom van Gerven, KU Leuven, Belgium

Tomasz Sosnowski, Warsaw University of Technology, Poland



×