Monitoring of tool vibration for magnetorheological fluid controlled bar during turning of hardened AISI4340 steel

Journal title

Archive of Mechanical Engineering




vol. 62


No 2


Khan, Mohammad N. : Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia ; Alzafiri, Dhare : Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia



hard turning ; tool vibration ; magnetorheological (MR) damper ; tool condition monitoring ; acoustic emission ; skewness ; kurtosis

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.




Artykuły / Articles


DOI: 10.1515/meceng-2015-0014 ; ISSN 0004-0738, e-ISSN 2300-1895


Archive of Mechanical Engineering; 2015; vol. 62; No 2; 237-255


Sam Paul (2013), ANN assisted Sensor Fusion model to predict tool wear during Hard turning with Minimal Fluid Application of Machining and Machinability of Materials, International Journal, 13, 398. ; Scheffer (2003), Development of a tool wear monitoring system for hard turning of Machine Tools and Manufacture, International Journal, 43, 973. ; Dornfeld (1992), Application of acoustic emission techniques in manufacturing, International, 25, 259. ; Sam Paul (2013), Performance evaluation of hard turning of AISI steel with minimal fluid application in the presence of semi - solid lubricants of Engineering Tribology, Journal, 227, 739. ; Sam Paul (2012), Effect of magnetorheological damper on tool vibration during hard turning of Frontiers in Mechanical Engineering, Journal, 7, 410. ; Klocke (1997), Dry cutting of the CIRP, Annals, 46, 519. ; Deqing (2009), Magnetorheological fluidcontrolled boring bar for chatter suppression of Materials Processing Technology, Journal, 209, 1861. ; Narutaki (1979), Tool Wear and Cutting Temperature of CBN Tools in Machining of Hardened Steels of the CIRP, Annals, 28, 23. ; Sharma (2006), Tool wear estimation for turning operations of Mechanical Engineering, Journal, 57, 141. ; Prakash (2013), In - process tool condition monitoring using acoustic emission sensor in mocroendmilling and Technology, Machining Science, 17, 209, ; Wang (1999), Chatter suppression based on nonlinearvibration characteristic of electrorheological fluids of Machine Tools and Manufacture, International Journal, 39, 1925. ; Xialoi (2002), A brief review : acoustic method for tool wear monitoring during turning of Machine Tools & Manufacture, International Journal, 42, 157. ; Sam Paul (2012), A multi - sensor fusion model based on an artificial neural network to predict tool wear during hard turning of Engineering Manufacture, Journal, 226, 853. ; Altintas (2012), Manufacturing Automation : Metal Cutting Mechanics Machine Tool Vibrations and CNC Design second edition Cambridge University Press, Cambridge. ; Varadarajan (2002), Investigations on hard turning with minimal fluid application and its comparison with dry and wet turning of Machine Tools & Manufacture, International Journal, 42, 193. ; Ginder (1996), Rheology of magnetorheological fluids : models and measurements of Modern Physics, International Journal B, 10, 3293. ; Genc (2002), Rheological Properties of Magnetorheological Fluids Materials and Structures, Smart, 11, 140. ; Sam Paul (2014), Effect of magnetic field on damping ability of magnetorheological damper during hard turning of Civil and Mechanical Engineering, Archives, 14, 433. ; Tansel (2002), Tool wear estimation in micro machining - part tool usage - cutting force relationship of Machine Tools & Manufacture, International Journal, 40, 599. ; Bhaskaran (2012), Monitoring of hard turning using acoustic emission signal of Mechanical Science and Technology, Journal, 26, 609. ; Dornfeld (1980), Acoustic emission during orthogonal metal cutting of Mechanical Science, International Journal, 22, 285. ; Sam Paul (2015), Effect of magnetorheological damper on tool wear during hard turning with minimal fluid application of Civil and Mechanical Engineering, Archives, 15, 124. ; Spencer Jr (1997), Phenomenological Model of a Magnetorheological Damper of Engineering Mechanics, Journal, 123, 230.