Details

Title

Reconstruction of the Boundary Condition in the Problem of the Binary Alloy Solidification

Journal title

Archives of Metallurgy and Materials

Yearbook

2011

Issue

No 2 June

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences

Date

2011

Identifier

DOI: 10.2478/v10172-011-0031-y ; e-ISSN 2300-1909

Source

Archives of Metallurgy and Materials; 2011; No 2 June

References

Alexiades V. (1993), Mathematical Modeling of Melting and Freezing Processes. ; Crank J. (1996), Free and Moving Boundary Problems. ; Ganapathysubramanian B. (2005), Control of solidification of nonconducting materials using tailored magnetic fields, J. Crystal Growth, 276, 299, doi.org/10.1016/j.jcrysgro.2004.11.336 ; Ganapathysubramanian B. (2005), On the control of solidification using magnetic fields and magnetic field gradients, Int. J. Heat Mass Transfer, 48, 4174, doi.org/10.1016/j.ijheatmasstransfer.2005.04.027 ; Grzymkowski R. (2006), Numerical method for multi-phase inverse Stefan design problems, Arch. Metall. Mater, 51, 161. ; Grzymkowski R. (2006), One-phase inverse Stefan problems solved by Adomian decomposition method, Comput. Math. Appl, 51, 33, doi.org/10.1016/j.camwa.2005.08.028 ; Gupta S. (2003), The Classical Stefan Problem. ; Hojny M. (2009), The methodology of strain-stress curves determination for steel in semi-solid state, Arch. Metall. Mater, 54, 475. ; Imani A. (2006), Simultaneous estimation of temperature-dependent thermal conductivity and heat capacity based on modified genetic algorithm, Inverse Probl. Sci. Eng, 14, 767, doi.org/10.1080/17415970600844242 ; Kapturkiewicz W. (2009), Modeling the kinetics of solidification of cast iron with lamellar graphite, Arch. Metall. Mater, 54, 369. ; Majchrzak E. (1995), Application of the BEM in the thermal theory of foundry, Eng. Anal. Bound. Elem, 16, 99, doi.org/10.1016/0955-7997(95)00049-6 ; Majchrzak E. (1998), Simulation ofheat and mass transferindomain of solidifying binary alloy, Arch. Metallurgy, 43, 341. ; Meyer G. (1981), A numerical method for the solidification of a binary alloy, Int. J. Heat Mass Transfer, 24, 778, doi.org/10.1016/0017-9310(81)90024-7 ; Mochnacki B. (2008), Simulation of heat and mass transfer in domain of casting made from binary alloy, Arch. Foundry Eng, 8, 4, 121. ; Mochnacki B. (1995), Numerical Methods in Computations of Foundry Processes. ; Mochnacki B. (2000), Modelling of segregation in the process of Al-Si alloy solidification, Soldification of Metals and Alloys, 2, 44, 229. ; Okamoto K. (2007), A regularization method for the inverse design of solidification processes with natural convection, Int. J. Heat Mass Transfer, 50, 4409, doi.org/10.1016/j.ijheatmasstransfer.2006.10.019 ; Özişik M. (1980), Heat Conduction. ; Ren H.-S. (2007), Application of the heat-balance integral to an inverse Stefan problem, Int. J. Therm. Sci, 46, 118, doi.org/10.1016/j.ijthermalsci.2006.04.013 ; Samanta D. (2005), Numerical study of macrosegregation in aluminum alloys solidifying on uneven surfaces, Int. J. Heat Mass Transfer, 48, 4541, doi.org/10.1016/j.ijheatmasstransfer.2005.06.008 ; Samanta D. (2006), Control of macrosegregation during the solidification of alloys using magnetic fields, Int. J. Heat Mass Transfer, 49, 4850, doi.org/10.1016/j.ijheatmasstransfer.2006.05.045 ; Słota D. (2007), Direct and inverse one-phase Stefan problem solved by variational iteration method, Comput. Math. Appl, 54, 1139, doi.org/10.1016/j.camwa.2006.12.061 ; Słota D. (2008), Solving the inverse Stefan design problem using genetic algorithms, Inverse Probl. Sci. Eng, 16, 829, doi.org/10.1080/17415970801925170 ; Słota D. (2008), Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem, Int. Comm. Heat & Mass Transf, 35, 149, doi.org/10.1016/j.icheatmasstransfer.2007.08.010 ; Słota D. (2009), Identification of the cooling condition in 2-D and 3-D continuous casting processes, Numer. Heat Transfer B, 55, 155, doi.org/10.1080/10407790802605232 ; Słota D. (2010), The application of the homotopy perturbation method to one-phase inverse Stefan problem, Int. Comm. Heat & Mass Transf, 37, 587, doi.org/10.1016/j.icheatmasstransfer.2010.03.009 ; Suchy J. (2003), Analysis of segregation process using the broken line model. Theoretical base, Arch. Foundry, 3, 10, 229. ; Szeliga D. (2004), Parameters identification of material models based on the inverse analysis, Int. J. Appl. Math. Comput. Sci, 14, 549. ; Szopa R. (1999), Modelling of solidification and crystalization using combined boundary element method, Zeszyty Nauk. Pol. śl. Hut, 54. ; Talar J. (2002), Application of genetic algorithm for identification of rheological and friction parameters in copper deformation process, Arch. Metallurgy, 47, 27. ; Voller V. (2006), Asimilarity solution for solidification of an under-cooled binary alloy, Int. J. Heat Mass Transfer, 49, 1981, doi.org/10.1016/j.ijheatmasstransfer.2006.01.011 ; Voller V. (2008), An enthalpy method for modeling dendritic growth in a binary alloy, Int. J. Heat Mass Transfer, 51, 823, doi.org/10.1016/j.ijheatmasstransfer.2007.04.025 ; Yang G. (1998), The adjoint method for an inverse design problem in the directional solidification of binary alloys, J. Comput. Phys, 140, 432, doi.org/10.1006/jcph.1998.5893 ; Yang G. (1998), An adjoint method for the inverse design of solidification processes with natural convection, Int. J. Numer. Methods Engrg, 42, 1121, doi.org/10.1002/(SICI)1097-0207(19980730)42:6<1121::AID-NME403>3.0.CO;2-8 ; Zabaras N. (1997), A functional optimization formulation and implementation of the inverse natural convection problem, Comput. Methods Appl. Mech. Engrg, 144, 245, doi.org/10.1016/S0045-7825(96)01184-X
×