Science and earth science

Studia Quaternaria

Content

Studia Quaternaria | 2021 | vol. 38 | No 1

Download PDF Download RIS Download Bibtex

Abstract

Multi-proxy palaeoenvironmental analyses on the two loess-palaeosol sequences of Šarengrad II and Zmajevac (Croatia) provided the opportunity to obtain various data on climatic and environmental events that occurred in the southern part of the Carpathian Basin during the past 350,000 years. Palaeoecological horizons were reconstructed using sedimentological data (organic matter and carbonate content, grain-size distribution and magnetic susceptibility) and the dominance-based malacological results (MZs) supported by habitat and richness charts, moreover multi-variate statistics (cluster analysis). The correlation of the reconstructed palaeoecological horizons with global climatic trends (Marine Isotope Stages) determined the main accumulation processes in the examined areas. The palaeoecological analyses revealed specific accumulation conditions at both sequences, fluvial and aeolian environments at Šarengrad and a possible forest refuge at Zmajevac.
Go to article

Bibliography

1. Alexandrowicz, W.P., Dmytruk, R., 2007. Molluscs in Eemian–Vistulian deposits of the Kolodiiv section, Ukraine (East Carpathian Foreland) and their palaeoecological interpretation. Geological Quaterly 51/2, 173–178.
2. An, Z., Kukla, G.J., Porter, S.C., Xiao, J., 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 29–36.
3. Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C., Fontugne, M., 2001. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76–77, 211–229.
4. Banak, A., Pavelić, D., Kovačić, M., Mandic, O., 2013. Sedimentary characteristics and source of loess in Baranja (Eastern Croatia). Aeolian Research 11, 129–139.
5. Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.L., Lowe, J.J., Wohlfarth, B., and intimate members, 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. Journal of Quaternary Science 13, 283–292.
6. Bond, G.C., Broecker, W.S., Johnsen S., McManus, J.F., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147.
7. Clark, P.U., Dyke, A.S., Sakhun, J.D., Carlson, A.E., Clark, J., Wolfharth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710–714.
8. Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242–248.
9. Dearing, J.A., Hay, K.L., Baban, S.M., Huddleston, A.S., Wellington, E.M., Loveland, P., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, 728–734.
10. Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S., 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and palaeoclimate change. Acta Geochimica et Cosmochimica 65, 901–913.
11. Dowdeswell, J.A., 1982. Relative dating of late Quaternary deposits using cluster and discriminant analysis, Audubon Cirque, Mt. Audubon, Colorado Front Range. Boreas 11, 151–161.
12. Galović, L., 2014. Geochemical archive in the three loess/palaeosol sections in the Eastern Croatia: Zmajevac I, Zmajevac and Erdut. Aeolian Research 15, 113–132.
13. Galović, L., 2016. Sedimentological and mineralogical characteristics of the Pleistocene loess/palaeosol sections in Eastern Croatia. Aeolian Research 20, 7–23.
14. Galović, L., Peh, Z., 2016. Mineralogical discrimination of the pleistocene loess/palaeosol sections in Srijem and Baranja, Croatia. Aeolian Research 21, 151–162.
15. Galović, L., Frechen, M., Halamić, J., Durn, G., Romić, M., 2009. Loess chronostratigraphy in Eastern Croatia – A luminescence dating approach. Quaternary International 198, 85–97.
16. Galović, L., Frechen, M., Peh, Z., Durn, G., Halamić, J., 2011. Loess/ palaeosol section in Šarengrad, Croatia – A qualitative discussion on the correlation of the geochemical and magnetic susceptibility data. Quaternary International 240/1–2, 22–34.
17. Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electrica 4(1), 9 pp.
18. Heiri, O., Lotter, A., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content insediments: reproducibility and comparability of results. Journal of Palaeolimnology 25, 101–110.
19. Hemming, S.R., 2004. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Review of Geophysics 42, RG1005, 1–43.
20. Hupuczi, J., 2012. Egy egyedülálló dél-alföldi löszszelvény malakológiai vizsgálata és a terület felső-würm palaeoklimatológiai rekonstrukciója. PhD thesis, University of Szeged, p. 119 (in Hungarian)
21. Hupuczi, J., Molnár, D., Sümegi, P., 2010. Preliminary malacological investigation of the loess profile at Šarengrad, Croatia. Central European Journal of Geosciences 2, 57–63.
22. Keller, E.A., Swanson, F.J., 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes and Landforms 4(4), 361–380.
23. Konert, M., Vandenberghe, J., 1997. Comparison of layer grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523–535.
24. Krolopp, E., 1983. A magyarországi pleisztocén képződmények malakológiai tagolása. CSc thesis, Magyar Állami Földtani Intézet, Budapest, p. 160. (in Hungarian)
25. Krolopp, E., Sümegi, P., 1992. A magyarországi löszök képződésének palaeoökológiai rekonstrukciója Mollusca fauna alapján. In: Szöőr, Gy. (Ed.), Fáciesanalitikai, palaeobiogeokémiai és palaeoökológiai kutatások. MTA Debreceni Akadémiai Bizottság, Debrecen, 247–263. (in Hungarian)
26. Krolopp, E., Sümegi, P., 1995. Palaeoecological reconstruction of the Late Pleistocene based on loess malacofauna on Hungary. Geo-Journal 36, 213–222.
27. Lisiecki, L.E., Raymo, M.E., 2005. A Plio-Pleistocene stack of 57 globally distributed benthic δ18O Records. Palaeoceanography 20, PA1003, 1–17.
28. Ložek, V., 1964. Quartarmollusken der Tschechoslowakei. Rozpravy Ústredniho ústavu geologického, Praha, 31, pp. 374. (in German)
29. Moine, O, Rousseau, D.D, Antione, P., 2005. Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas 34/3, 363–380.
30. Molnár, D., 2015. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével. PhD thesis, Szeged, Hungary, p. 125. (in Hungarian)
31. Molnár, D., Hupuczi, J., Galović, L., Sümegi, P., 2010. Preliminary malacological investigation on the loess profile at Zmajevac, Croatia. Central European Journal of Geosciences 2/1, 52–56.
32. Molnár, D., Sümegi, P., Fekete, I., Makó, L., Sümegi, B.P., 2019. Radiocarbon dated malacological records of two Late Pleistocene loess-palaeosol sequences from SW Hungary: Palaeoecological inferences. Quaternary International 504, 108–117.
33. Nugteren, G., Vandenberghe, J., van Huissteden, J., An, Z.S., 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planeary. Change 41, 167–183.
34. Passega, R., Byramjee, R., 1969. Grain-size image of clastic deposits. Sedimentology 13(3–4), 233–252.
35. Pécsi, M., 1990. Loess is not just the accumulation of dust. Quaternary International 7–8, 1–21.
36. Podani, J., 1978. Néhány klasszifikációs és ordinációs eljárás alkal mazása a malakofaunisztikai és cönológiai adatok feldolgozásában I. Állattani Közlemények 65, 103–113. (in Hungarian)
37. Podani, J., 1979. Néhány klasszifikációs és ordinációs eljárás alkalmazása a malakofaunisztikai és cönológiai adatok feldolgozásában II. Állattani Közlemények 66, 85–97. (in Hungarian)
38. Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653–667.
39. Rousseau, D.D., 1990a. Biogeography of the Pleistocene pleniglacial malacofaunas in Europe. Stratigraphic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 7–23.
40. Rousseau, D.D., 1990b. Statistical analyses of loess molluscs for palaeoecological reconstructions. Quaternary International 7, 81–89.
41. Rousseau, D.D., 1991. Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 36, 195–209.
42. Rousseau, D.D., Kukla, G., 1994. Late Pleistocene climate record in the Eustis loess section, Nebraska, based on land snail assemblages and magnetic susceptibility. Quaternary Research 42, 176–187.
43. Rousseau, D.D., Puisségur, J.J., 1999. Climatic interpretation of terrestrial malacofaunas of the last interglacial in southeastern France. Palaeogeography, Palaeoclimatology, Palaeoecology 151/4, 321–336.
44. Rousseau, D.D., Antione, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J.M., Moine, O., Labonne, M., Bentaleb, I., Jolly, D., 2002. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the last glaciation. Quaternary Science Revivews 21, 1577–1582.
45. Rousseau, D.D., Sima, A., Antione, P., Hatté, C., Lang, A., Zöller, L., 2007. Link between European and North-Atlantic abrupt climate changes over the last glaciation. Geophysical Research Letters 34 (L22713), 1029/2007/GL031716.
46. Ruszkiczai-Rüdiger, Zs., Csillag, G., Fodor, L., Braucher, R., Novothny, Á., Thamó-Bozsó, E., Virág, A., Pazonyi, P., Timár, G., 2018. Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin). Quaternary Geochronology 48, 148–170.
47. Ruszkiczay-Rüdiger, Zs., Balázs, A., Csillag, G., Drijkoningen, G., Fodor, L., 2020. Uplift of the Transdanubian Range, Pannonian Basin: How fast and why? Global and Planetary Change 192, 103263.
48. Southwood, T.R.E., Henderson, P.A., 2000. Ecological methods. Blackwell Science Ltd, Oxford, England, 575 pp.
49. Sümegi, P., 1989. A Hajdúság felső-pleisztocén fejlődéstörténete finomrétegtani (üledékföldtani, őslénytani, geokémiai) vizsgálatok alapján. PhD thesis, Kossuth Lajos Tudományegyetem, Debrecen, 96 pp. (in Hungarian)
50. Sümegi, P., 1995. Quartermalacological analysis of Late-Pleistocene loess sediments of the Great Hungarian Plain. In: Fűköh L. (ed.), Quaternary Malacostratigraphy in Hungary. Malacological Newsletter Suppl. 1, 79–111.
51. Sümegi, P., 1996. Az ÉK-magyarországi löszterületek összehasonlító őskörnyezeti rekonstrukciója és rétegtani értékelése. CSc thesis, Kossuth Lajos Tudományegyetem, Debrecen, p. 120. (in Hungarian)
52. Sümegi, P., 2001. A negyedidőszak földtanának és őskörnyezettanának alapjai. JATEPress, Szeged, 262 pp. (in Hungarian)
53. Sümegi, P., 2005. Loess and Upper Palaeolithic environment in Hungary. Aurea Kiadó, Nagykovácsi, 312 pp.
54. Sümegi, P., Krolopp, E., 1995. A magyarországi würm korú löszök képződésének palaeoökológiai rekonstrukciója Mollusca-fauna alapján. Földtani Közlöny 125, 125–148. (in Hungarian)
55. Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15000–70000 BP years. Radiocarbon 40, 855–863.
56. Sümegi, P., Krolopp, E., 2002. Quartermalacological analyses for modelling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quaternary International 91, 53–63.
57. Sümegi, P., Persaits, G,. Gulyás, S., 2012. Woodland-Grassland Ecotonal Shifts in Environmental Mosaics: Lessons Learnt from the Environmental History of the Carpathian Basin (Central Europe) During the Holocene and the Last Ice Age Based on Investigation of Palaeobotanical and Mollusk Remains. In: Myster, R.W. (Ed.), Ecotones Between Forest and Grassland. Springer Press, New York, 17–57.
58. Sümegi, P., Gulyás, S., Csökmei, B., Molnár, D., Hammbach, U., Marković, S., Stevens, T., 2013. Climatic fluctuations inferred for the Middle and Late Pleniglacial (MIS2) based on high-resolution (~ca.20 y) preliminary environmental magnetic investigation from the loess profile of Madaras brickyard (Hungary). Central European Geology 55, 329–345.
59. Sümegi, P., Náfrádi, K., Molnár, D., Sávai, Sz., 2015. Results of palaeoecological studies in the loess region of Szeged-Öthalom (SE Hungary). Quaternary International 357, 1–13.
60. Sümegi, P., Marković, S.B., Molnár, D., Sávai, S., Szelepcsényi, Z., Novák, Z., 2016. Črvenka loess-palaeosol sequence revisited: local and regional Quaternary biogeographical inferences of the southern Carpathian Basin. Open Geosciences 8, 309–404.
61. Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Almond, P.C., Vandenberghe, J., Zhou, L.P., Pál-Molnár, E., Törőcsik, T., Hao, Q., Smalley, I., Molnár, M., Marsi, I., 2018. New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quaternary Science Reviews 191, 144–166.
62. Sümegi, P., Molnár, D., Gulyás, S., Náfrádi, K. Sümegi, B.P., Törőcsik, T., Persaits, G., Molnár, M., Vandenberghe, J., Zhou, L.P., 2019. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: the loess-palaeosol sequence of Katymár brickyard (Hungary). Quaternary International 504, 40–55.
63. Sümegi, P., Gulyás, S., Molnár, D., Szilágyi, G., Sümegi, B.P., Törőcsik, T., Molnár, M., 2020. 14C dated chronology of the thickest and best resolved loess/palaeosol record of the LGM from SE Hungary based on comparing precision and accuracy of age-depth models. Radiocarbon 62/2, 403–417.
64. Sun, J., Liu, T., 2000 Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth and Planetary Science Letters 180, 287–296. 65. Timár, G., 2003. Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Science Reviews 22, 2199–2207.
66. Turowski, J.M., Wyss, C.R., Beer, A.R., 2015. Grain size effects on energy delivery to the streambed and links to bedrock erosion. Geophysical Research Letters 42, 1775–1780.
67. Újvári, G., Kovács, J., Varga, G., Raucsik, B., Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29, 3157–3166.
68. Újvári, G., Molnár, M., Novothny Á., Páll-Gergely B., Kovács J., Várhegyi A., 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews 106, 140–154.
69. Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews 121, 18–30.
70. Vandenberghe, J., Nugteren, G., 2001. Rapid climatic changes recorded in loess successions. Global and Planetary Change 28, 1–9.
71. Vandenberghe, J., Mücher, H.J., Roebroeks, W., Gemke, D., 1985. Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvèdère, Southern Limburg, The Netherlands. Mededelingen Rijks Geologische Dienst 39-1, 7–18.
72. Vandenberghe, J., An, Z.S., Nugteren, G., Lu, H., van Huissteden, J., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25, 35–38.
73. Wacha, L., Galović, L., Koloszár, L., Magyari, Á., Chikán, G., Marsi, I., 2013. The chronology of the Šarengrad II loess-palaeosol section (Eastern Croatia). Geologica Croatica 66/3, 191–203.
74. Zeeden, C., Laag, C., Camps, P., Guyodo, Y., Hambach, U., Just, J., Lurcock, P., Rolf, C., Satolli, S., Scheidt, S., Wouters, S., 2020. Towards data interchangeability in palaeomagnetism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10627, https://doi.org/10.5194/egusphere-egu2020-10627
75. Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737–739.
76. Zhu, R., Liu, Q., Jackson, M.J., 2004. Palaeoenvironmental significance of the magnetic fabrics in Chinese loess-palaeosols since the last interglacial ( 130 ka). Earth and Planetary Science Letters 221, 55–69.
Go to article

Authors and Affiliations

Dávid Molnár
1 2
László Makó
1 2
Péter Cseh
1 2
Pál Sümegi
1 2
István Fekete
3
Lidija Galović
4

  1. Department of Geology and Paleontology, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  2. University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes research team, H-6722 Szeged, Egyetem u. 2-6, Hungary
  3. Department of Physical Geography and Geoinformatics, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  4. Croatian Geological Survey, Sachsova 2, 10001 Zagreb, Croatia
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns GMT application for studies of the geophysical and geomorphological settings of the Weddell Sea. Its western part is occupied by the back-arc basin developed during geologic evolution of the Antarctic. The mapping presents geophysical settings reflecting tectonic formation of the region, glaciomarine sediment distribution and the bathymetry. The GlobSed grid highlighted the abnormally large thickness of sedimentary strata resulted from the long lasting sedimentation and great subsidence ratio. The sediment thickness indicated significant influx (>13,000m) in the southern segment. Values of 6,000–7,000 m along the peninsula indicate stability of the sediments influx. The northern end of the Filchner Trough shows increased sediment supply. The topography shows variability -7,160–4,763 m. The ridges in the northern segment and gravity anomalies (>75 mGal) show parallel lines stretching NW-SE (10°–45°W, 60°–67°S) which points at the effects of regional topography. The basin is dominated by the slightly negative gravity >-30 mGal. The geoid model shows a SW-NE trend with the lowest values <18 m in the south, the highest values >20m in the NE and along the Coats Land. The ripples in the north follow the geometry of the submarine ridges and channels proving correlation with topography and gravitational equipotential surface.
Go to article

Bibliography

1. Aleshkova, N. D., Golynsky, A. V, Kurinin, R.G., Mandrikov, V.S., 1997. Gravity Mapping in the Southern Weddell Sea Region. (Explanatory note for free-air and Bouguer anomalies maps). Polarforschung, 67 (3), 163–177.
2. Anderson, J.B., 1972a. The Marine Geology of the Weddell Sea. Florida State University Sedimentological Research Laboratory, Publication Number 35, Florida State University, Tallahassee, p. 222.
3. Anderson, J.B., 1972b. Nearshore glacial-marine deposition from modern sediments of the Weddell Sea. Nature 240, 189–192.
4. Anderson, J.B., Andrews, B.A., Bartek, L.R., Truswell, E.M., 1991. Petrology and palynology of glacial sediments: implications for subglacial geology of the eastern Weddell Sea, Antarctica. In: Thomson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Cambridge University Press, Cambridge (UK), 231–235.
5. Barker, P.F., Dalziel, I.W.D., Storey, B.C., 1991. Tectonic evolution of the Scotia Arc region. In: Tingey, R.J. (Ed.), Antarctic Geology. Oxford University Press, 215–248.
6. Bart, P.J., DeBatist, M., Jokat, W., 1999. Interglacial collapse off Crary Trough Mouth Fan, Weddell Sea, Antarctica: implications for Antarctic glacial history. Journal of Sedimentary Research 69, 1276–1289.
7. Bell, R.E., Brozena, J.M., Haxby, W.F., Labrecque, J.L., 1990. Continental Margins of the Western Weddell Sea: Insights from Airborne Gravity and Geosat‐Derived Gravity. Contributions to Antarctic Research I, 50, doi: 10.1029/AR050p0091.
8. Bentley, M.J., Anderson, J.B., 1998. Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science 10, 309–325.
9. Bentley, M., Fogwill, C., Le Brocq, A., Hubbard, A., Sugden, D., Dunai, T., Freeman, S., 2010. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change. Geology 38, 411–414.
10. Bentley, M.J., Hein, A., Sugden, D.E., Whitehouse, P., Vieli, A., Hindmarsh, R.C.A., 2012. Post-glacial thinning history of the Foundation Ice Stream, Weddell Sea embayment, Antarctica. In: Abstract C51C-0787 Presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 December 2012.
11. Bentley, M.J., Hein, A.S., Sugden, D.E., Whitehouse, P.L., Shanks, R., Xu, S., Freeman, S.P.H.T., 2017. Deglacial history of the Pensacola mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quaternary Science Reviews 158, 58–76.
12. Bradley, S.L., Hindmarsh, R.C.A., Whitehouse, P.L., Bentley, M.J., King, M.A., 2015. Low post-glacial rebound rates in the Weddell Sea due to late Holocene ice-sheet readvance. Earth and Planetary Science Letters 413, 79–89.
13. Carsey, F.D., 1980. Microwave observation of the Weddell Polynya. Monthly Weather Review 108, 2032–2044.
14. Clark, P.U., 2011. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change: comment. Geology 39, 239, doi: 10.1130/G31533C.1.
15. Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J., Barbat, M.M., 2018. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography 149, 10–24.
16. Crawford, K., Kuhn, G., Hambrey, M.J., 1996. Changes in the character of glaciomarine sedimentation in the southwestern Weddell Sea, Antarctica: evidence from the core PS1423-2. Annals of Glaciology 22, 200–204.
17. Cunningham, W.D., Dalziel, I.W.D., Lee, T.-Y., Lawver, L.A., 1995. Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research 100, 8257–8266.
18. Curtis, M.L., Storey, B.C. 1996. A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution. Geological Society, London, Special Publications 108, 11–30, doi: 10.1144/ GSL.SP.1996.108.01.02.
19. DeConto, R., Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597.
20. Eagles, G., Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 28–50.
21. Elverhøi, A., 1981. Evidence for a late Wisconsin glaciation of the Weddell Sea. Nature 293, 641–642.
22. Elverhøi, A., Roaldset, E., 1983. Glaciomarine sediments and suspended particulate matter, Weddell Sea shelf, Antarctica. Polar Research 1, 1–21.
23. Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., Wisotzki, A., 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research 53, 515–538.
24. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393.
25. Gales, J., Leat, P., Larter, R., Kuhn, G., Hillenbrand, C.D., Graham, A., Mitchell, N., Tate, A., Buys, G., Jokat, W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology 348, 73–87.
26. Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
27. GEBCO Compilation Group, 2020. GEBCO 2020 Grid, doi: 10.5285/ a29c5465-b138-234d-e053-6c86abc040b9.
28. GDAL/OGR contributors, 2020. GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.
29. Grobe, H., Huybrechts, P., Fütterer, D.K., 1993. Late Quaternary record of sea-level changes in the Antarctic. Geologische Rundschau 82, 263–275, doi: 10.1007/BF00191832.
30. Grikurov, G.E., Ivanov, V.L., Traube, V.V., Leitchenkov G.L., Aleshkova, N.D., Golynsky, A.V., Kurinin, R.G., 1991. Structure and evolution of sedimentary basins in the Weddell province. Abstract 6th International Symposium Antarctic Earth Sciences, Tokyo, 185–190.
31. Haase, G.M., 1986. Glaciomarine sediments along the Filchner/Ronne Ice Shelf. southern Weddell Sea e first results of the 1983/84 ANTARKTIS- II/4 expedition. Marine Geology 72, 241–258.
32. Haid, V., Timmermann, R., 2013. Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research 118, 2640–2652.
33. Haugland, K., Kristoffersen, Y., Velde, A., 1985. Seismic investigations in the Weddell Sea embayment. Tectonophysics 114 (1–4), 1–21.
34. Haugland, K., 1982. Seismic reconnaissance survey in the Weddell Sea. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison (U.S.A.), 405–413.
35. Hegland, M., Vermeulen, M., Todd, C., Balco, G., Huybers, K., Campbell, S., Conway, H., Simmons, C., 2012. Glacial geomorphology of the Pensacola mountains, Weddell Sea sector, Antarctica. In: Abstracts of the WAIS Workshop 2012, 21.
36. Hein, A.S., Marrero, S.M., Woodward, J., Dunning, S.A., Winter, K., Westoby, M.J., Freeman, S.P.H.T., Shanks, R.P., Sugden, D.E., 2016. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nature Communications 7, 12511, doi: 10.1038/ncomms12511.
37. Hein, A.S., Fogwill, C.J., Sugden, D.E., Xu, S., 2011. Glacial/Interglacial ice-stream stability in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 307, 211–221.
38. Hillenbrand, C.-D., Melles, M., Kuhn, G., Larter, R.D., 2012. Marine geological constraints for the grounding-line position of the Antarctic Ice Sheet on the southern Weddell Sea shelf at the Last Glacial Maximum. Quaternary Science Reviews 32, 25–47.
39. Hillenbrand, C.-D., Bentley, M.J., Stolldorf, T.D., Hein, A.S., Kuhn, G., Graham, A.G.C., Fogwill, C.J., Kristoffersen, Y., Smith, J.A., Anderson, J.B., Larter, R.D., Melles, M., Hodgson, D.A., Mulvaney, R., Sugden D.E., 2014. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews 100, 111–136.
40. Huang, X., Gohl, K. Jokat, W., 2014. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change 118, 25–41.
41. Huang, X., Jokat, W., 2016. Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change 139, 211–225.
42. Johnson, J.S., Nichols, K.A., Goehring, B.M., Balco, G., Schaefer, J.M., 2019. Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth and Planetary Science Letters 518, 127–135.
43. Jokat, W., Fechner, N., Studinger, M., 1997. Geodynamic models of the Weddell Sea embayment in view of new geophysical data. In: Ricchi, C.A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antarctica Publication, Siena (Italy), 453– 459.
44. Kerr, R., Dotto, T.S., Mata, M.M., Hellmer, H.H., 2018. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes. Deep Sea Research Part II: Topical Studies in Oceanography 149, 70–83.
45. King, E.C., Bell, A.C., 1996. New seismic data from the Ronne Ice Shelf, Antarctica. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea tectonics and Gondwana break-up. London, Geological Society of London, 213–226. (Geological Society special publication, 108), doi: 10.1144/GSL.SP.1996.108.01.16.
46. Kjellsson, J., Holland, P.R., Marshall, G.J., Mathiot, P., Aksenov, Y., Coward, A.C., Bacon, S., Megann, A.P., Ridley, J., 2015. Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modelling 94, 141–152.
47. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences 5 (1), 28–42.
48. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90.
49. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
50. König, M., Jokat, W., 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research Solid Earth (1978–2012), 111 (B12).
51. Kristoffersen, Y., Hinz, K., 1991. Evolution of the Gondwana plate boundary in the Weddell Sea area. In: Thomson, M.R. A., Crame, J.A., Thomson, J.W. (Eds), Geological evolution of Antarctica. Cambridge University Press, Cambridge, 225–223.
52. Kuhn, G., Weber, M., 1993. Acoustical characterization of sediments by Parasound and 3.5 kHz systems: related sedimentary processes on the southeastern Weddell Sea continental slope, Antarctica. Marine Geology 113, 201–217.
53. Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (Ed.), Expeditions programm Nr. 75 ANT XXIII/4, AWI, doi: 10.13140/RG.2.2.11468.87687.
54. Larter, R.D., Graham, A.G.C., Hillenbrand, C.-D., Smith, J.A., Gales, J.A., 2012. Late Quaternary grounded ice extent in the Filchner Trough, Weddell Sea, Antarctica: new marine geophysical evidence. Quaternary Science Reviews 53, 111–122.
55. Lemenkova, P., 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 158 pp., doi: 10.13140/RG.2.2.16945.22881.
56. Lemenkova, P., 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
57. Lemenkova, P., 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45 (2), 57–84.
58. Lemenkova, P., 2019b. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
59. Lemenkova, P., 2019c. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
60. Lemenkova, P., 2019d. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
61. Lemenkova, P., 2019e. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14 (2), 39–48.
62. Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
63. Lemenkova, P., 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60.
64. Lemenkova, P., 2020b. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74 (1), 19–39.
65. Lemenkova, P., 2020c. Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute 25, 129–138.
66. Lemenkova, P., 2020d. R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering 13 (1), 5–12.
67. Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (Eds), Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285, doi: 10.6084/m9.figshare.7434230.
68. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp R.H., Olson, T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861.
69. Lindeque, A., Martin, Y., Gohl, K., Maldonado, A., 2013. Deep sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Marine Geology 336, 61–83.
70. Livermore, R.A., Woollett, R.W., 1993. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth and Planetary Science Letters 117, (3–4), 475–495.
71. Livermore, R.A., Hunter, R., 1996. Mesozoic seafloor spreading in the southern Weddell Sea. In: Storey, B., King, E., Livermore, R. (Eds.), Weddell Sea Tectonics and Gondwana Breakup. Geological Society, London, Special Publications 108, 227–241.
72. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-Zaldívar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., Rodríguez- Fernández, J., Somoza, L., Vázquez, J.T., 2005. Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Global and Planetary Change 45 (1), 99–129.
73. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-ZaldÍvar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., RodrÍguez-Fernández, J., Somoza, L., Suriñach, E., Vázquez, J.T., 2006. Seismic Stratigraphy of Miocene to Recent Sedimentary Deposits in the Central Scotia Sea and Northern Weddell Sea: Influence of Bottom Flows (Antarctica). In: Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds), Antarctica. Springer, Berlin, Heidelberg, 441–446, doi: 10.1007/3-540-32934- X_56.
74. Michels, K.H., Rogenhagen, J., Kuhn, G., 2001. Recognition of contour- current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Marine Geophysical Research 22, 465–485.
75. Mueller, R.D., Timmermann, R., 2017. Weddell Sea Circulation. Journal of Atmospheric and Solar-Terrestrial Physics 161, 105–117.
76. Nankivell, A.P., 1997. Tectonic Evolution of the Southern Ocean Between Antarctica, South America and Africa Over the Last 84 Ma. Ph.D. thesis University of Oxford, Oxford, UK.
77. Nicholls, K.W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E., 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Reviews of Geophysics 47, RG3003, doi: 10.1029/2007RG000250.
78. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406, doi: 10.1029/2011JB008916.
79. Paxman, G.J.G., Jamieson, S.S.R., Hochmuth, K., Gohl, K., Bentleya, M.J., Leitchenkov, G., Ferracciolif, F., 2019. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 535. 109346, doi: 10.1016/j.palaeo.2019.109346.
80. Riley, T.R., Jordan, T.A., Leat, P.T., Curtis, M.L., Millar, I.L., 2020. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research 79, 185–196, doi: 10.1016/j. gr.2019.09.014.
81. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason- 1 reveals buried tectonic structure. Science 346 (6205), 65–67.
82. Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D.D., Damiani, T.M., Young, D., Cochran, J.R., Richter, T.D., 2016. New Antarctic gravity anomaly grid forenhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters 43 (2), doi: 10.1002/2015GL067439.
83. Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
84. Siegert, M., Ross, N., Corr, H., Kingslake, J., Hindmarsh, R., 2013. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quaternary Science Reviews 78, 98–107.
85. Smith, W.H.F., 1993. On the accuracy of digital bathymetric data. Journal of Geophysical Research 98, B6, 9591–9603.
86. Snyder, J.P., 1987. Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395. Washington, DC: U.S. Government Printing Office, 124–137.
87. Snyder, J.P., 1993. Flattening the Earth: Two Thousand Years of Map Projections. ISBN 0-226-76747-7.
88. Storey, B.C., Dalziel, I.W.D., Garrett, S.W., Grunow, A.M., Pankhurst, R.J., Vennum, W.R., 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. In: Scotese, C.R., Sager, W.W. (Eds), 8th Geodynamics Symposium, Mesozoic and Cenozoic Plate Reconstructions. Elsevier, 381–390. (Tectonophysics, 155, 1–4).
89. Storey, B.C., Vaughan, A.P.M., Millar I.L., 1996. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea Tectonics and Gondwana Break-up. Geological Society Special Publication, London, 108, 87–103.
90. Stolldorf, T., Schenke, H.-W., Anderson, J.B., 2012. LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quaternary Science Reviews 48, 20–31.
91. Stow, D.A.V., Faugères, J.C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.C., Viana, A.R. (Eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series. Memoir. Geological Society of London, London, 7–20.
92. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R., 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20 (4), 1756– 1772.
93. Suetova, I.A., Ushakova, L.A., Lemenkova P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
94. Tingey, R.J., 1991. The regional geology of Archean and Proterozoic rocks in Antarctica. In: Tingey, RJ. (Ed.), The Geology of Antarctica, Clarendon Press, Oxford, 1–58.
95. Uenzelmann-Neben, G., 2006. Depositional patterns at Drift 7, Antarctic Peninsula: along-slope versus down-slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology 233, 49–62.
96. Weber, M.E., Bonani, G., Fütterer, K.D., 1994. Sedimentation processes within channel ridge systems, southern Weddell Sea, Antarctica. Palaeoceanography 9, 1027–1048.
97. Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. Eos Transactions of the American Geophysical Union 72 (41), 441.
98. Wessel, P., Smith, W.H.F., 1995. New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union 76 (33), 329.
99. Wessel, P., Smith, W.H.F., 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research 101, 8741-8743.
100. Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F., 2013. Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union 94 (45), 409–410.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Bolshaya Gruzinskaya Str. 10, Bld. 1, Moscow, 123995, Russian Federation;
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new approach to stratigraphy and palaeogeography of NW Ukraine. So far, the glacial landforms near the Rostan area have been interpreted as end moraines derived from the Saalian ice-sheet. Sedimentological and petrographic analyses conducted at the Rostan site shed new light on the dynamics and age of the ice-sheet that formed the examined glaciogenic forms. Sedimentological analysis of glacial deposits documented the sedimentary environment of a glaciofluvial fan deposited by the ice-sheet front characterised by varying dynamics, i.e. advancing, stationary and retreating. Petrographic analysis proved an older age of deposits, i.e. Elsterian, and not Saalian as interpreted so far. These results shed new light on palaeogeography and stratigraphy of this area. The occurrence of the Elsterian deposits on the surface gives evidence of the absence of younger – Saalian – glaciation in this area, which relates to the recently announced new approaches to palaeogeography and stratigraphy of neighbouring areas in eastern Poland.
Go to article

Bibliography

1. Bogucki, A., Wołoszyn, P., Gaigalas, A., Meleszyte, M., Zalesski, I., 1998. Glacigenic complex of Volhynian Polesie, Rostań and Kalinówka sites. In: Dobrowolski, R. (Ed.), Tour Guide of the 4th Congress of Polish Geomorphologists, Main directions of geomorphological research in Poland, Current status and perspectives, III, Lublin, 65–81 (in Polish).
2. Bogucki, A., Zalesski, I., Karpenko, N., Kowalczuk, I., Krawczuk, J., 2003. Geologic-geomorphologic evolution of the north-western part of the Volhynian Polesie. Acta Agrophysica 1 (2), 217–232 (in Polish with English summary).
3. Bogucki, A., Łanczont, M., 2018. Stratigraphy of loess-soil complexes of the periglacial zone of the western part of Ukraine. Guide of XX Polish-Ukrainian Field Seminar, Climatic cycles of Pleistocene in the record of the sludge sequence of the Podlaska Lowland. Mielnik, 9–10 (in Polish).
4. Böse, M., 1989. Methodisch-stratigraphische Studien und paläomorphologische Untersuchungen zum Pleistozän südlich der Ostsee. Berliner Geographische Abhandlungen 51, 1–114 (in German with English summary).
5. Buraczyński, J., Wojtanowicz, J., 1982. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Orzechów Nowy. PIG, Warszawa (in Polish).
6. Curray, J.R., 1956. The analysis of two-dimensional data. Journal of Geology 64, 117–131.
7. Czubla, P., 2015. Fennoscandian erratics in glacial sediments of Poland and their research significance. Wyd. UŁ, Łódź, 335 pp. (in Polish with English summary).
8. Czubla, P., Terpiłowski, S., Orłowska, A., Zieliński, P., Zieliński, T., Pidek, I.A., 2019. Petrographic features of tills as a tool in solving stratigraphical and palaeogeographical problems – a case study from Central-Eastern Poland. Quaternary International 501, 45–58.
9. Davis, J.C., 1973. Statistics and data analysis in geology. New York, 550 pp.
10. Dolecki, L., Gardziel, Z., Nowak, J., 1990. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sosnowica. PIG, Warszawa (in Polish).
11. Evans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., 2006. Subglacial till: Formation, sedimentary characteristics and classification. Earth-Science Reviews 78, 115–176.
12. Gałązka, D., 2004. Application of macroscopic examination of erratic boulders to determine stratigraphy of glacial clays of central and northern Poland. (Zastosowanie makroskopowych badań eratyków do określania stratygrafii glin lodowcowych środkowej i północnej Polski) (PhD thesis). Archiwum Wydziału Geologii UW, Warszawa.
13. Gibbard, S., Caldeira, K., Bala, G., Phillips, T.J., Wickett, M., 2005. Climate effects of global land cover change, Geophysical Research Letters 32, L23705, doi: 10.1029/2005GL024550.
14. Górska-Zabielska, M., 2010. Petrographic study of glacial sediments – an outline of the problem. Landform Analysis 12, 49–70 (in Polish with English summary).
15. Instrukcja, 2004. Instructions for developing and publishing the Detailed Geological Map of Poland in the scale 1: 50,000, edition II supplemented. Państwowy Instytut Geologiczny, Warszawa (in Polish), 137 pp.
16. Lindner, L., 2005. A new look at the number, age and extent of the Middle Polish Glaciations in the southern part of central-eastern Poland. Przegląd Geologiczny, 53 (2), 145–150 (in Polish).
17. Lindner, L., A. Bogucki, A., Chlebowski, R., Jelowiczewa, J., Wojtanowicz, J., Zalesski, I., 2007. Outline of the Pleistocene stratigraphy in the Yolhynian Polesie (NW Ukraine). Annales UMCS, B, 62, 7–41 (in Polish with English summary).
18. Lindner, L., Marks, L., Nita, M., 2013. Climatostratigraphy of interglacials in Poland: Middle and Upper Pleistocene lower boundaries from a Polish perspective. Quaternary International 292, 113–123.
19. Lindner, L., Marks, L., 2018. Korelacja zlodowaceń i interglacjałów Polski, Białorusi i Ukrainy. XX Polsko-Ukraińskie Seminarium Terenowe”Klimatyczne cykle plejstocenu w zapisie sekwencji osadowej Niziny Podlaskiej”, 16–17.
20. Lisicki, S., 2003. Lithotypes and lithostratigraphy of tills of the Pleistocene in the Vistula drainage basin area, Poland. Prace PIG 177, 1–105 (in Polish with English summary).
21. Łanczont, M., Bogucki, A., Yatsyshyn, A., Terpiłowski, S., Mroczek, P., Orłowska, A., Hołub, B., Zieliński, P., Komar, M., Woronko, B., Kulesza, P., Dmytruk, R., Tomeniuk, O., 2019. Stratigraphy and chronology of the periphery of the Scandinavian ice-sheet at the foot of the Ukrainian Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 530, 59–77.
22. Maizels, J.K., 1993. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sedimentary Geology 85, 299–325.
23. Marks, L., Ber, A., Gogołek, W., Piotrowska, K., (Eds) 2006. Geological Map of Poland in scale 1:500 000. Państwowy Instytut Geologiczny, Warszawa.
24. Marszałek, S., 2001. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sobibór. PIG, Warszawa (in Polish).
25. Miall, A.D., 1977. A review of the braided river depositional environment. Earth Sciences Review 13, 1–62.
26. Palienko, W.P., 1982. Peculiarities of the glacial landscape of the Dnieper Glaciation in Volhynia Polesie. Quaternary research materials of the territory of Ukraine (Osobiennosti glacioreliefa krayevoy zony dnieprovskogo lednika w predelakh Volynskogo Polesiya). Materialy po izucheniyu chetvertichnogo perioda na teritorii Ukrainy, 203–211 (in Russian).
27. Palienko, W.P., Gruzman, G.G., 1978. O строиении некоторых краевых форм ледникового рельефа Волынского Полесья (O strojenii niekotorych krajewych form lednikogo relief Wołynskogo Polesia.) In: Krajewyje obrazowanija matierikowych oledienenija. Materialy V Vsesoyuznogo soveshchaniya. Naukowa Dumka, Kiev, 177–181 (in Russian).
28. Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94–106.
29. Salamon, T., 2017. Elsterian ice sheet dynamics in a topographically varied area (Southern part of the Racibórz-Oświęcim Basin and its vicinity, southern Poland). Geological Quarterly 61 (2), 465–479. 30. TGL 25 232 1971. Standards in geology – Analysis of bottom moraines. Zentrales Geologisches Institut, Berlin (in German).
31. TGL 25232/01-05 1980. Standards in geology – Analysis of bottom moraines. Zentrales Geologisches Institut, Berlin (in German).
32. Terpiłowski, S., Zieliński, T., Kusiak, J., Pidek, I.A., Czubla, P., Hrynowiecka, A., Godlewska, A., Zieliński, P., Małek, M., 2014. How to resolve Pleistocene stratigraphic problems by different methods? A case study from eastern Poland. Geological Quarterly 58 (2), 235–250.
33. Tutkovskiy, P.A., 1902. Конечные морены, валунные полосы и озы в Южном Полесье. Зап. Киев. о-ва естествоиспытателей. – Киев (Koniecznyje moreny, wałunyja połosy i ozy w jużnom Polesije s kartoj.). Zapiski w Kievskogo obshchestva yestestvoispytatelej 17, 2, 353–460. (in Russian).
34. Włodarski, W., Godlewska, A., 2016. Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe. Quaternary Science Reviews 146, 300–321.
35. Włodawa, 1933, Topographic Map 1:100 000, Sheet Włodawa, Military Geographical Institute (in Polish).
36. Wodyk, K., 2000. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sosnówka. PIG, Warszawa (in Polish).
37. Zalesskij, І.I., 1978. Краевые ледниковые образования северо- запада Украины в районе Любомль-Шацк (Kraevye lednikovye obrazovaniya severo-zapada Ukrainy v rayone Lyuboml’-Shatsk) In: Краевые образования материковых оледенений : материалы V Всесоюзного совещания. Наукова Думка, Киев (Kraevye obrazovaniya materikovykh oledeneny: Materialy V Vsesoyuznogo soveshchaniya. Naukova Dumka, Kiev) (in Russian).
38. Zalesskij, I., 2014. (Ed.) Державна Геологічна Карта України Масштаб 1:200 000 Геологічна Карта І Карта Корисних Копалин Четвертинних Відкладів (Derzhavna Heolohichna Karta Ukrainy Masshtab 1:200 000 Heolohichna Karta I Karta Korysnykh Kopalyn CHetvertynnykh Vidkladiv) (in Ukrainian).
39. Zalesskij, І.I., Zuzuk, F.W., Melniczuk, W.G., Matjejuk, W.W., Brovko, G.I., 2014. Шацьке поозер’я. Геологічна будова та гідрогеологічні умови (Shaćke poozerjia. Heolohichna budova ta hidroheolohichni umovy). Morfologia 1 (in Ukrainian).
40. Zieliński, T., Pisarska-Jamroży, M., 2012. Jakie cechy litologiczne osadów warto kodować, a jakie nie? Przegląd Geologiczny 60, 387–397 (in Polish).
41. Zieliński, T., Van Loon, A.J., 1999. Subaerial terminoglacial fans I: a semi-quantitative sedimentological analysis of the proximal environment. Geologie en Mijnbouw 77, 1–15
Go to article

Authors and Affiliations

Joanna Rychel
1
Anna Orłowska
2
Łukasz Zbucki
3
Łukasz Nowacki
1
Ivan Zalesskij
4

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  2. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka 2d, 20-718 Lublin, Poland
  3. Pope John Paul 2nd State School of Higher Education, Faculty of Economics Sciences, Sidorska 95/97, 21-500 BiałaPodlaska, Poland
  4. Rivne State Humanitarian University, Halytskoho 12/20, 33012 Rivne, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The outcrop of the tsunami deposits, about 6 m thick, is located in the archaeological site Tel Askan in the Al Zhraa locality, southwest of the Gaza City. These deposits are unconformably underlain by sand dunes and sharply overlain by a palaeosol. They are pale gray sands mixed with volcanic ash and fine-grained deposits, and are intercalated with peat, few centimetres thick. The sand-sized grains are well rounded and well sorted, and consist mainly of quartz and subordinate of feldspar. Both macro- and microfossils were observed from tsunami deposits. Additionally, rip-up clasts and pottery shards were observed, indicating higher-flow regime. The potteries in tsunami deposits provide evidence for tsunami inundation at distance of about 1 km from the present shoreline.
Go to article

Bibliography

1. Altinok, Y., Alpar, B., Özer, N., Aykurt, H., 2011. Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions. Natural Hazards and Earth System Sciences 11, 273–291.
2. Ambraseys, N., Karcz, I., 1992. The earthquake of 1546 in the Holy Land. Terra Nova 4, 254–263.
3. Ambraseys, N., Melville, C.P., Adams, R.D., 1994. The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review. Cambridge University Press, pp. 181.
4. Amiran, D.H., 1994. Location index for earthquakes in Israel since 100 BCE. Israel Exploration Journal 46, 120–130.
5. Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I., Rojas, C., 2016. The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics 173, 333–348.
6. Bahlburg, H., Spiske, M., 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology 59, 1063–1086.
7. Barkai, O., Katz, O., Mushkin, A., Goodman-Tchernov, B.N., 2017. Long-term retreat rates of Israel’s Mediterranean sea cliffs inferred from reconstruction of eroded archaeological sites. Geoarchaeology 1–14.
8. Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klügel, A., van der Plicht, J., 2008. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science 35, 191–212.
9. Chagué-Goff, C., 2010. Chemical signatures of palaeotsunamis: a forgotten proxy? Marine Geology 271, 67–71.
10. Dominey-Howes, D., 2007. Geological and historical records of tsunami in Australia. Marine Geology 239, 99–123.
11. Fokaefs, A., Papadopoulos, G.A., 2007. Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea. Natural Hazards 40, 503–526.
12. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627– 1600 BC. Science 312, 548.
13. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July 1998 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 1969–1999.
14. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D., 2012. Progress in palaeotsunami research. Sedimentary Geology 243–244, 70–88.
15. Goff, J., McFadgen, B.G., Chagué-Goff, C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology 204, 235–250.
16. Goodman-Tchernov, B., Katz, T., Shaked, Y., Qupty, N., Kanari, M., Niemi, T., Agnon, A., 2016. Offshore evidence for an undocumented tsunami event in the “low risk” gulf of Aqaba-Eilat, Northern Red Sea. PLoS One 11, e0145802.
17. Goodman-Tchernov, B., Katz, O., 2016. Holocene-era submerged notches along the southern Levantine coastline: punctuated sea level rise? Quaternary International 401, 17–27.
18. Goodman-Tchernov, B.N., Dey, H.W., Reinhardt, E.G., McCoy, F., Mart, Y., 2009. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology 37, 943–946.
19. Goto, K., Chagué-goff, C., Goff, J., Jaffe, B., 2012. The future of tsunami research following the 2011 Tohoku-oki event. Sedimentary Geology 282, 1–13.
20. Goto, K., Kawana, T., Imamura, F., 2010. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews 102, 77–99.
21. Goto, K., Takahashi, J., Oie, T., Imamura, F., 2011. Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology 127, 107–116.
22. Hoffmann, N., Master, D., Goodman-Tchernov, B., 2018. Possible tsunami inundation identified amongst 4–5th century BCE archaeological deposits at Tel Ashkelon, Israel. Marine Geology 396, 150–159.
23. Jaffe, B., Gelfenbaum, G., Rubin, D., Peters, R., Anima, R., Swensson, M., Olcese, D., Anticona, L.B., Gomez, J.C., Riega, P.C., 2003. Identification and interpretation of tsunami deposits from the June 23, 2001 Perú tsunami. Coastal Sediments 2003 Conference Proceedings. 24. Katz, O., Mushkin, A., 2013. Characteristics of sea-cliff erosion induced by a strong winter storm in the eastern Mediterranean. Quaternary Research 80, 20–32.
25. Katz, O., Reuven, E., Aharonov, E., 2015. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental- slope. Marine Geology 369, 100–115.
26. Klein, M., Zviely, D., Kit, E., Shteinman, B., 2007. Sediment transport along the Coast of Israel: examination of fluorescent sand tracers. Journal of Coastal Research 23, 1462–1470.
27. Kortekaas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology 200, 208–221.
28. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 15296–15303.
29. Maramai, A., Brizuela, B., Graziani, L., 2014. The Euro-Mediterranean tsunami catalogue. Annals of Geophysics 57, S0435.
30. Moore, A.L., Brian G. McAdoo, B.G., Ruffman, A., 2007. Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology 200, 336–346.
31. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology 200, 184–207.
32. Negev, A., Gibson, S., 2001. Archaeological Encyclopedia of the Holy Land. New York and London, Continuum, pp. 25–26.
33. Nelson, A.R., Briggs, R.W., Dura, T., Engelhart, S.E., Gelfenbaum, G., Bradley, L., Forman, S.L., Vane, C.H., Kelley, K.A., 2015. Tsunami recurrence in the eastern Alaska-Aleutian arc: a Holocene stratigraphic record from Chirikof Island, Alaska. Geosphere 11, 1172–1203.
34. Papadopoulos, G.A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P.M., Pantosti, D., González, M., Yalciner, A.C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T., Papageorgiou, A., 2014. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: geological signatures, generation mechanisms and coastal impacts. Marine Geology 354, 81–109.
35. Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., Wassmer, P., 2010. Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore-onshore model. Marine Geology 268, 43–54.
36. Peters, R., Jaffe, B., Gelfenbaum, G., 2007. Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America. Sedimentary Geology 200, 372–386.
37. Pfannenstiel, M., 1952. Das Quartaer der Levante, I: Die Kueste Palaestina- Syriens, Akad. In: Abhundlungen Der Mathematisch-Naturwissenschaftlichen Klasse, Akademider Wissenschaften Und Der Literatur in Mainz in Kommission Bei F. Steiner, pp. 373–475.
38. Pfannenstiel, M., 1960. Erläuterungen zu den bathymetrischen Karten des östlichen Mittelmeeres. Bulletin de l’Institut Océanographique 1192, 1–60.
39. Phantuwongraj, S., Choowong, M., 2012. Tsunamis versus storm deposits from Thailand. Natural Hazards 63, 31–50.
40. Pilarczyk, J.E., Dura, T., Horton, B.P., Engelhart, S.E., Kemp, A.C., Sawai, Y., 2014. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 144–157.
41. Rosen, A., 2008. Site formation. In: Stager, L., Schloen, D.J., Master, D. (Eds.), Ashkelon 1: Introduction and Overview. Eisenbrauns, Winona Lake, Indiana, pp. 101–104.
42. Sakuna-Schwartz, D., Feldens, P., Schwarzer, K., Khokiattiwong, S., Stattegger, K., 2015. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits. Natural Hazards and Earth System Sciences 15, 1181–1199.
43. Salamon, A., Rockwell, T., Guidoboni, E., Comastri, A., 2011. A critical evaluation of tsunami records reported for the Levant coast from the second millennium BCE to the present. Israel Journal of Earth Sciences 58, 327–354.
44. Salamon, A., Rockwell, T., Ward, S.N., Guidoboni, E., Comastri, A., 2007. Tsunami hazard evaluation of the Eastern Mediterranean: historical analysis and selected modeling. Bulletin of the Seismological Society of America 97, 705–724.
45. Scheffers, A.M., 2002. Paleotsunami evidences from boulder deposits. Science of Tsunami Hazards 20, 26–37.
46. Scheucher, L.E.A., Vortisch, W., 2011. Sedimentological and geomorphological effects of the Sumatra-Andaman tsunami in the area of Khao Lak, southern Thailand. Environmental Earth Sciences 63, 785–796.
47. Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E.J., Sabatier, F., Mastronuzzi, G., Pignatelli, C., Piscitelli, A., 2013. Coastal boulders in Martigues, French Mediterranean: evidence for extreme storm waves during the Little Ice Age. Zeitschrift für Geomorphologie, Supplementary Issues 57 (4), 181–199.
48. Sivan, D., Wdowinski, S., Lambeck, K., Galili, E., Raban, A., 2001. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 101–117.
49. Sivan, D., Lambeck, K., Toueg, R., Raban, A., Porath, Y., Shirman, B., 2004. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for relative sea level changes during the last 2000 years. Earth and Planetary Science Letters 222, 315–330.
50. Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S., Shchetnikov, N.A., 2000. Tsunamis in the Mediterranean Sea 2000 BC–2000 AD. Kluwer Academic Publishers, Dordrecht, pp. 239.
51. Ubeid, K.F., 2016. Quaternary Stratigraphy Architecture and Sedimentology of Gaza and Middle- to Khan Younis Governorates (The Gaza Strip, Palestine). International Journal of Scientific and Research Publications 6, 109–117.
52. Ubeid, K.F., 2010. Marine lithofacies and depositional zones analysis along coastal ridge in Gaza Strip, Palestine. Journal of Geography and Geology 2, 68–76.
53. Ubeid, K.F., 2011. Sand Characteristics and Beach Profiles of the Coast of Gaza Strip, Palestine. Serie Correlacion Geologica 27, 121–132.
54. Ubeid, K.F., Al-Agha, M.R., Almeshal, W.I., 2018. Assessment of heavy metals pollution in marine surface sediments of Gaza Strip, southeast Mediterranean Sea. Journal of Mediterranean Earth Sciences 10, 109–121.
55. Ubeid, K.F., Albatta, A., 2014. Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts. Earth Sciences Research Journal 18, 131–142.
56. Ubeid, K.F., Ramadan, K.A., 2017. Activity concentration and spatial distribution of radon in beach sands of Gaza Strip, Palestine. Journal of Mediterranean Earth Sciences 9, 19–28.
57. Weiss, R., 2012. The mystery of boulders moved by tsunamis and storms. Marine Geology 295, 28–33.
58. Yolsal, S., Taymaz, T., Yalc, Iner, A.C., 2007. Understanding tsunamis, potential source regions and tsunami-prone mechanisms in the Eastern Mediterranean. Geological Society London Special Publications 291, 201–230.
Go to article

Authors and Affiliations

Khalid Fathi Ubeid
1
ORCID: ORCID

  1. Department of Geology, Faculty of Science, Al Azhar University-Gaza, P.O. Box 1277, Gaza Strip, Palestine
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of research of three sections (Kuców 9, 10 and 16). Two of them record fluvial and lacustrine interglacial sediments and the third, cold-stage glaciolacustrine sediments. They were formed inside the Miocene– Pliocene syncline depressions in a central part of the southern horst within the Kleszczów Graben. Fluvial and lacustrine deposits of the Middle Pleistocene Interglacial (Mazovian or Ferdynandovian in the Czyżów Formation) are described from the Kuców 9 and 10 sections. Their sediments are located in marginal parts of a buried river valley and within an oxbow palaeolake, then covered by glaciofluvial deposits of the Ławki (Early Saalian) and Rogowiec (Late Saalian) Formations. The Kuców 16 section comprises ice-dam sandy lithofacies (Kuców Formation, Elsterian) of a marginal part in a proglacial lake. Two pollen diagrams of K65/15 and Kuców 9 sections represent the Mazovian (Holsteinian) succession, although in the Kuców 9 section some features are typical for the Ferdinandovian succession.
Go to article

Bibliography

1. Allen, P., Krzyszkowski, D., 2008. Till base deformation and fabric variation in Lower Rogowiec (Wartanian, Younger Saalian) till, Bełchatów outcrop, central Poland. Annales Societatis Geologorum Poloniae 78 (1), 19–35.
2. Balwierz, Z., Goździk, J., Marciniak, B., 2006. Palinologiczne i diatomologiczne badania osadów interglacjału mazowieckiego z odsłonięcia w kopalni Bełchatów. Przegląd Geologiczny 54, 1, 61–67.
3. Balwierz, Z., Goździk, J., Marciniak, B., 2008. Geneza misy jeziornej i warunki środowiskowe akumulacji limniczno-bagiennej w interglacjale mazowieckim w rowie Kleszczowa (środkowa Polska). Biuletyn Państwowego Instytutu Geologicznego 428, 3–21.
4. Baraniecka, M.D., 1971. Dorzecze Widawki na tle obszaru marginalnego stadiału mazowiecko-podlaskiego (Warty) w Polsce. Biuletyn Instytutu Geologicznego 254, 11–36.
5. Borówko-Dłużakowa, Z., 1981. Interglacjał mazowiecki na Wyżynie Wieluńskiej. Biuletyn Instytutu Geologicznego 321, 259–275.
6. Břizová, E., 1994. Vegetation of the Holsteinian interglacial in Stonava-Horni Sucha (Ostrava rerian). Sbornik geolorickych ved, Antropozoikum 21, 29–56.
7. Cailleux, A., 1961. Aplication a la geomorpfologie des methodes ďétudes des sables et des galets, Unuversidade do Brasil. Courso de Altos Etudos Geographicos, Rio de Janeiro.
8. Czerwonka, J.A., 1998a. Litostratygrafia glin lodowcowych: uwagi metodyczne. Biuletyn Państwowego Instytutu Geologicznego 385, 113–125.
9. Czerwonka, J.A., 1998b. Wspomaganie analizy minerałów ciężkich komputerem ZX-Spectrum. Archiwum Przedsiębiorstwa Geologicznego „Proxima” S.A., Wrocław.
10. Czubla, P., Terpiłowski, S., Orłowska, A., Zieliński, P., Zieliński, T., Pidek, I.A., 2019. Petrographic features of tills as a tool in solving stratigraphical and palaeogeographical problems – A case study from Central-Eastern Poland. Quaternary International 501, 45– 58, https://doi.org/10.1016/j.quaint.2017.08.028.
11. Goździk, J.S, 1980. Zastosowanie morfoskopii i graniformametrii do badań osadów w kopalni węgla brunatnego Bełchatów. Studia Regionalne 4, 101−114.
12. Goździk, J.S., 1995. Vistulian sediments in the Bełchatów open cast mine, Central Poland. Quaternary Studies in Poland 13, 13–23.
13. Gruszka, B., Goździk, J., Zieliński, T., 2004. Osady delty i jeziora ze zlodowacenia warty oraz warunki ich sedymentacji (odsłonięcie bełchatowskie). In: Harasimiuk, M., Terpiłowski, S. (Eds), Zlodowacenie warty w Polsce. UMCS Press, Lublin, 71–86.
14. Hałuszczak, A., 1982. Osady zastoiskowe typu deltowego. Charakterystyka i znaczenie ich występowania. In: Czwartorzęd rejonu Bełchatowa. I Sympozjum. Główne kierunki i wstępne wyniki badań w zakresie stratygrafii i struktur osadów. WG, Wrocław-Warszawa, 175–179.
15. Janczyk-Kopikowa, Z., 1985. Opracowanie paleobotaniczne osadów czwartorzędowych nakładu w kopalni węgla brunatnego Bełchatów. Archiwum PIG, Warszawa, 43 pp.
16. Janczyk-Kopikowa, Z., 1987. Wyniki analizy pyłkowej próbek z wierceń z Pola Bełchatów. Archiwum PIG, Warszawa, 12 pp.
17. Krzyszkowski, D., 1989. The Deposits of the Mazovian (Holsteinian) Interglacial in the Kleszczów Graben (Central Poland). Bulletin of the Polish Academy of Sciences. Earth Sciences 37 (1–2), 121–130.
18. Krzyszkowski, D., 1991a. The Middle Pleistocene Polyinterglacial Czyżów Formation in the Kleszczów Graben (central Poland): stratigraphy and palaeogeography. Folia Quaternaria 61/62, 5–58.
19. Krzyszkowski, D., 1991b. Stratigraphy, sedimentology and ecology of the lacustrine Deposits of Ferdynandovian Interglacial in the Bełchatów outcrop (central Poland). Folia Quaternaria 61/62, 145– 178.
20. Krzyszkowski, D., 1991c. Extra-channel muddy sedimentation and soil formation during The Middle Pleistocene Czyżów Interstadial with examples from the Bełchatów outcrop (Kleszczów Graben, central Poland). Folia Quaternaria 61/62, 179–214.
21. Krzyszkowski, D., 1992. Quaternary tectonics in the Kleszczów Graben (Central Poland): a study based on sections from the “Bełchatów outcrop”. Quaternary Studies in Poland 11, 65–90.
22. Krzyszkowski, D., 1993. Pleistocene glaciolacustrine sedimentation in a tectonically active zone, Kleszczów Graben, Central Poland. Sedimentology 40, 623–644.
23. Krzyszkowski, D., 1994. Controls on sedimentation in the Elsterian proglacial lake, Kleszczów Graben, central Poland. In: Warreen, W.P., Croot, D.G (Eds), Formation and Deformation of Glacial Deposits, Proc. of the Meeting of the Commission on the Formation and Deformation of Glacial Deposits, Dublin, Ireland, May 1991. A.A. Balkema, Rotterdam. Brookfield, 53–68.
24. Krzyszkowski, D., 1995. Odranian glaciolacustrine sedimentation in the Kleszczów Graben, central Poland. Annales Societatis Geologorum Poloniae 64, 1–14.
25. Krzyszkowski, D., 1996. Climatic control on Quaternary fluvial sedimentation in the Kleszczów Graben, Central Poland. Quaternary Science Reviews 15, 315–333.
26. Krzyszkowski, D., Czerwonka, J.A., 1992. Quaternary Geology of the Kleszczów Graben (Central Poland): a study based on boreholes from the western forefield of the „Bełchatów” outcrop. Quaternary Studies in Poland 11, 91–129.
27. Krzyszkowski, D., 2010. Stratygrafia glin lodowcowych w zachodniej Polsce – dyskusja. In: Marks, L., Pochocka-Szwarc, K. (Eds), XVII Konferencja Stratygrafia plejstocenu Polski. Dynamika zaniku lądolodu podczas fazy pomorskiej w północno-wschodniej części Pojezierza Mazurskiego. Jeziorowskie, 6–10.09.2010. PIGPIB, Warszawa, 123–127.
28. Krzyszkowski, D., Bötger, T, Junge, F., Kuszell, T., Nawrocki, J., 1996. Ferdynandovian Interglacial palaeoclimate reconstructions from pollen successions, isotope composition and palaeomagnetic susceptibility. Boreas 25, 283–296.
29. Krzyszkowski D., Wachecka-Kotkowska L., 2013. Stratygrafia plejstocenu Polski środkowej w świetle hipotezy krótkich i długich okresów interglacjalnych. In: XX Konf. Strat. plejst. Polski, Lasocin, PIG-PIB, Warszawa, 59–62.
29. Krzyszkowski, D., Wachecka-Kotkowska, L., Wieczorek, D., 2016a. Wybrane cechy strukturalne osadów w dolnym piętrze strukturalnym w odkrywce Bełchatów (Polska środkowa) – profil Kuców 16. XXIII Konferencja Stratygrafia Plejstocenu Polski, Plejstocen południowej części pogranicza Polsko-Białoruskiego, Biała Podlaska/ Brest 5–9. 09. 2016, 70–71.
30. Krzyszkowski, D., Wachecka-Kotkowska, L., Wieczorek, D., Kittel, P., 2016b. Mazovian fluvial and lacustrine sediments of the Czyżów Complex based on the study of the Bełchatów Outcrop, Central Poland. In: Kalicki, T., Frączek, M. (Eds), Evolution of river valleys in Central Europe. Fluvial Archives Group, Biennial Meeting 12–18. 09. 2016, Kielce-Suchedniów, 2016, 66–67.
31. Krzyszkowski, D., Wachecka-Kotkowska L., Wieczorek D., 2017. Osady interglacjału mazowieckiego w obrębie formacji Czyżów w odkrywce Bełchatów. XXIV Konferencja Naukowo-Szkoleniowa Stratygrafia Plejstocenu Polski „Czwartorzęd pogranicza niżu i wyżyn w Polsce Środkowej”, 4–8 września 2017, Wawrzkowizna k/Bełchatowa, 154–156.
32. Krzyszkowski, D., Wachecka-Kotkowska, L., Malkiewicz, M., Jary, Z., Tomaszewska, K., Niska, M., Myśkow, E., Raczyk, J., Drzewicki, W., Hamryszczak, D., Nawrocki, J., Ciszek, D., Rzodkiewicz, M., Krzymińska, J., Skurzyński, J., Jezierski, P., 2019. A new site of Holsteinian (Mazovian) limnic deposits in the Książnica outcrop at Krzczonów (near Świdnica), Sudetic Foreland. Quaternary International 501, 59–89, https://doi.org/10.1016/j. quaint.2017.09.046.
33. Kuszell, T., 1991a. The Ferdynandovian Interglacial in the Bełchatów outcrop, Central Poland. Folia Quaternaria 61/62, 75–83.
34. Kuszell, T., 1991b. The floral characteristics of the Middle Pleistocene Czyżów Interstadial. In the Bełchatów outcrop, Central Poland. Folia Quaternaria 61/62, 215–222.
35. Lindner, L., Marks, L., Nita, M., 2013. Climatostratigraphy of interglacials in Poland: Middle and Upper Pleistocene lower boundaries from a Polish perspective. Quaternary International 292, 113–123, https://doi.org/10.1016/j.quaint.2012.11.018.
36. Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A., Woronko, B., 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica 66 (3), 403–427, doi: 10.1515/ agp-2016-0018.
37. Marks, L., Karabanov, A., Nitychoruk, J., Bahdasarau, M., Krzywicki, T., Majecka, A., Pochocka-Szwarc, K., Rychel, J., Woronko, B., Zbucki, Ł., Hradunova, A., Hrychanik, M., Mamchyk, S., Rylova, T., Nowacki, Ł., Pielach, M., 2018. Revised limit of the Saalian ice sheet in central Europe. Quaternary International 478, 59–74, https://doi.org/10.1016/j.quaint.2016.07.043.
38. Miall, A.D., 1978. Lithofacias types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologits, Memoir 5, 597–604.
39. Mojski, J.E., 2005. Ziemie polskie w czwartorzędzie. Zarys morfogenezy. Państwowy Instytut Geologiczny, Warszawa, 404 pp.
40. Morawski, J., 1995. Metoda badania morfologii ziarn piasku za pomocą powiększalnika fotograficznego. Annales Universitae Mariae Curiae- Sklodowska B 10, 199–222.
41. Pawłowska, K., Greenfield, H., Czubla, P., 2014. ‘Steppe’ mammoth (Mammuthus trogontherii) remains in their geological and cultural context from Bełchatów (Poland): A consideration of human exploitation in the Middle Pleistocene. Quaternary International 326–327, 448–468.
42. Racinowski, R., Rzechowski, J., 1960. Próba wykorzystania stopnia obtoczenia ziaren skalnych dla genetycznej klasyfikacji osadów plejstoceńskich. Annales Universitattis Mariae Curiae-Sklodowska B 13, 107–118.
43. Rzechowski, J., 1996. Interglacjał Ferdynandowski w profilu stratotypowym w Ferdynandowie (Południowo-Wschodnie Mazowsze). Biuletyn Państwowego Instytutu Geologicznego 373, 161–171.
44. Terpiłowski, S., Zieliński, T., Kusiak, J., Pidek, I., A., Czubla, P., Hrynowiecka, A., Godlewska, A., Zieliński, P., Małek, M., 2014. How to resolve Pleistocene stratigraphic problems by different methods? A case study from eastern Poland. Geological Quarterly 58 (2), 235–250, doi: 10.7306/gq.1158.
45. Walanus, A., Nalepka, D., 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Palaeobotanica 2, 659–661.

Go to article

Authors and Affiliations

Dariusz Krzyszkowski
1
ORCID: ORCID
Lucyna Wachecka-Kotkowska
2
ORCID: ORCID
Małgorzata Nita
3
ORCID: ORCID
Dariusz Wieczorek
4
ORCID: ORCID

  1. University of Wrocław, Institute of Geography and Regional Development, 50-137 Wrocław, Pl. Uniwersytecki 1, Poland
  2. University of Łódź, Department of Geology and Geomorphology, 90-139 Łódź, Narutowicza 88, Poland
  3. University of Silesia, Faculty of Natural Sciences, Będzińska Str. 60, 41-200 Sosnowiec, Poland
  4. Polish Geological Institute – National Research Institute, Holy Cross Branch of Jan Czarnocki, Zgoda 21, 25-953 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The deepening and exploration of the loess-palaeosol section at the foot of the Kopasz Hill at Bodrogkeresztúr have been carried out to expand the existing knowledge of the Carpathian foothill palaeoenvironmental factors and their impact. The study deals with particle size analysis, organic matter and carbonate content. For the presentation of age-depth models, the OSL dates of Bodrogkeresztúr (BKT) and the 14C dates of Bodrogkeresztúr, brickyard 1 were used-, and the diagrams of the Accumulation Rates (AR) derived from them. These were compared with Mass Accumulation Rate (MAR) calculations based on OSL and 14C data from BKT and 14C data from Bodrogkeresztúr, brickyard 1. It became evident that there is a significant difference between the two sections, which may be due to the upland position, the overlap, or the wind tunnel effect. Sedimentological studies revealed coarser grain composition, however, the nearly complete absence of coarser sand fraction is also noticeable in the case of BKT. Also, the entire section is characterized by increased carbonate content due to post-sedimentation processes, recarbonization and leaching. The AR and MAR results show the difference between the suitability of different chronometric methods, indicating that the top of both sections may have been redeposited or eroded.
Go to article

Bibliography

1. Bennett, K.D., 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4, 337–348.
2. Blaauw, M., Christen, A.J., 2011. Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6 (3), 457–474.
3. Bohn, H.L., McNeal, B.L., O’Connor, G.A., 1985. Talajkémia, Mezőgazdasági Kiadó – Gondolat Kiadó, Budapest, 363 pp.
4. Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Marković, S.B., Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grainsize records. Quarternary International 234, 62–74.
5. Bösken, J., Obreht, I., Zeeden, C., Klasen, N., Hambach, U., Sümegi, P., Lehmkuhl, F., 2019. High-resolution palaeoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quaternary International 502, 95–107.
6. Bronk Ramsey, C., Lee, S., 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon 55 (2–3), 720–730.
7. Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242–248. 8. Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S., 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and palaeoclimate change. Acta Geochimica et Cosmochimica 65, 901–913.
9. Dokuchaev, V.V. , 1879. Chernozem (black earth) of European Russia, Societé Imperiale Libre Économique Trenke & Fusnot, St. Petersburg, 66 pp.
10. Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105–107.
11. Molnár, D., 2015. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével. Doktori disszertáció, Földtudományok Doktori Iskola, Szeged.
12. Molnár, D., Sümegi, P., 2016. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével, In: Unger, J., Pál-Molnár, E. (Eds), Geoszférák 2015, GeoLitera, Szeged, 185–209.
13. Pécsi, M., 1993. Negyedkor és löszkutatás. Akadémia kiadó, Budapest, 375 pp.
14. Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653–667.
15. Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 250,000 years”. Annual Review of Earth and Planetary Sciences 39, 461–488.
16. Schatz, A.-K., Zech, M., Buggle, B., Gulyás, S., Hambach, U., Marković, S.B., Sümegi, P., Scholten, T., 2011. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quaternary International 240, 52–61.
17. Schatz, A.-K., Buylaert, J.-P., Murray, A., Stevens, T., Scholten, T., 2012. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology 10, 68–74.
18. Schatz, A.-K., Scholten, T., Kühn, P., 2015. Palaeoclimate and weathering of the Tokaj (Hungary) loess-palaeosol sequence. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 170–182.
19. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., Spurk, M., 1998. INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 1041–1083.
20. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., Spurk, M., 1998a. INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 1041–1083.
21. Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 1127–1151.
22. Sümegi, P., 2005. Loess and Upper Palaeolithic environment in Hungary. Aurea Publishing, Nagykovácsi, 34–46.
23. Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15.000–70.000 BP years. Radiocarbon 40, 855–863.
24. Sümegi, P., Krolopp, E., 2002. Quatermalacological analyses for modeling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quaternary International 91, 53–63.
25. Sümegi, P., Molnár, D., Gulyás, S., Náfrádi, K., Sümegi, B., P., Törőcsik, T., Persaits, G., Molnár, M., Vandenberghe, J., Zhou, L., 2019. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: The loess-palaeosol sequence of Katymár brickyard (Hungary). Quarternary International 504, 40–55.
26. Sümegi, P., Rudner, Z.E., 2001. In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian Basin. Quaternary International 76/77, 165–176.
27. Sümegi, P., Törőcsik, T., Náfrádi, K., Sümegi, B., Majkut, P., Molnár, D., Tapody, R., 2016. Radiocarbon dated complex palaeoecological and geoarcheological analyses at the Bodrogkeresztúr-Henye Gravettian site (NE Hungary). Archeometriai Műhely 2016/XIII./1. 28. Újvári, G., Kovács, J., Varga, Gy., Raucsik, B., Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29 (23), 3157–3166.
29. Újvári, G., Molnár, M., Novothny, Á., Páll-Gergely, B., Kovács, J., Várhegyi, A., 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcso loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable ageedepth models for the last 40 ka. Quaternary Science Reviews 106, 140–154.
30. Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377–392.
Go to article

Authors and Affiliations

László Makó
1 2
Dávid Molnár
1 2
Péter Cseh
1 2
Pál Sümegi
1 2

  1. Department of Geology and Paleontology, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  2. University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes research team, H-6722 Szeged, Egyetem u. 2-6, Hungary

This page uses 'cookies'. Learn more