Applied sciences

Geodesy and Cartography

Content

Geodesy and Cartography | 2013 | vol. 62 | No 2 |

Abstract

Monitoring of permanent stations that make up the reference frame is an integral part of the geodesists work. Selection of reference stations is based on analysis of parameters characterizing them (hardware, coordinates’ stability, mounting, location). In this paper, we took into account phase residual as an indicator of unmodelled signal. Phase residuals were computed based on ASG-EUPOS and EPN observation processing. The results show the connection between the method of mounting the antenna and the residuals. We have reviewed multipath effect at ASG-EUPOS stations, and chosen those which are characterized by the highest value of phase residual. The results show that LC phase residual is a good factor to characterize site’s solutions’ reliability. For majority of sites RMS values were less than 10 mm. Modulations associated with multipath effect were observed for few ASG-EUPOS sites only. Phase residuals are distributed specifically for sites, which antennas are mounted on pillars (more common for EPN sites). For majority of analysed sites phase residual distribution was similar for different days and did not depend directly on atmosphere condition.
Go to article

Abstract

Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
Go to article

Abstract

The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data.
Go to article

Abstract

This paper proposes a modification of the classical process for evaluating the statistical significance of displacements in the case of heterogeneous (e.g. linear-angular) control networks established to deformation measurements and analysis. The basis for the proposed solution is the idea of local variance factors. The theoretical discussion was complemented with an example of its application on a simulated horizontal control network. The obtained results showed that the evaluation of the statistical significance of displacements in the case of heterogeneous control networks should be carried out using estimators of local variance factors.
Go to article

Abstract

The relationship between internal response-based reliability and conditionality is investigated for Gauss-Markov (GM) models with uncorrelated observations. The models with design matrices of full rank and of incomplete rank are taken into consideration. The formulas based on the Singular Value Decomposition (SVD) of the design matrix are derived which clearly indicate that the investigated concepts are independent of each other. The methods are presented of constructing for a given design matrix the matrices equivalent with respect to internal response-based reliability as well as the matrices equivalent with respect to conditionality. To analyze conditionality of GM models, in general being inconsistent systems, a substitute for condition number commonly used in numerical linear algebra is developed, called a pseudo-condition^number. Also on the basis of the SVD a formula for external reliability is proposed, being the 2-norm of a vector of parameter distortions induced by minimal detectable error in a particular observation. For systems with equal nonzero singular values of the design matrix, the formula can be expressed in terms of the index of internal response-based reliability and the pseudo-condition^number. With these measures appearing in explicit form, the formula shows, although only for the above specific systems, the character of the impact of internal response-based reliability and conditionality of the model upon its external reliability. Proofs for complementary properties concerning the pseudo-condition^number and the 2-norm of parameter distortions in systems with minimal constraints are given in the Appendices. Numerical examples are provided to illustrate the theory.
Go to article

Abstract

The aim of this study is to present an exemplary cartographic visualization of fi re hydrants data consisting of a set of thematic maps containing various information related to the location of hydrants, buildings and driveways in geographic space, and relationships existing between them. Identification of these relationships requires spatial analysis, and illustrating them requires the use of appropriate cartographic presentation methods. The study was conducted on a part of the city of Poznan using data on hydrants’ location and type collected and provided by the Fire Department. Geometric data, obtained using geoprocessing algorithms, were assigned appropriate symbols, which lets differentiate them qualitatively and quantitatively. An emphasis is placed on the use of adequate visual variables and on the cartographic communication efficiency. The result of the study is a cartographic visualization in the form of series of thematic maps arranged in a logical sequence, and providing information about the secured area. The thematic layers presenting the same area were arranged in different arrangements with maintenance of the reference layers, ensuring the ease of correlation. Such a cartographic visualization provides knowledge about the spatial distribution and diversity of objects and the relationships between them. It may be an important source of knowledge both at the identification stage and at the operational stage when conducting a fire fighting action.
Go to article

Abstract

The paper describes the estimation of covariance parameters in least squares collocation (LSC) by the cross-validation (CV) technique called leave-one-out (LOO). Two parameters of Gauss-Markov third order model (GM3) are estimated together with a priori noise standard deviation, which contributes significantly to the covariance matrix composed of the signal and noise. Numerical tests are performed using large set of Bouguer gravity anomalies located in the central part of the U.S. Around 103 000 gravity stations are available in the selected area. This dataset, together with regular grids generated from EGM2008 geopotential model, give an opportunity to work with various spatial resolutions of the data and heterogeneous variances of the signal and noise. This plays a crucial role in the numerical investigations, because the spatial resolution of the gravity data determines the number of gravity details that we may observe and model. This establishes a relation between the spatial resolution of the data and the resolution of the gravity field model. This relation is inspected in the article and compared to the regularization problem occurring frequently in data modeling.
Go to article

Abstract

The paper presents the results of real time measurements of test geodetic control network points using the RTK GPS and RTX Extended technologies. The Trimble RTX technology uses the xFill function, which enables real measurements without the need for constant connection with the ASG EUPOS system reference stations network. Comparative analyses of the results of measurements using the methods were performed and they were compared with the test control network data assumed to be error-free. Although the Trimble RTX technology is an innovative measurement method which is rarely used now, the possibilities it provides in surveying works, including building geodetic control networks, are satisfactory and it will certainly contribute to improving the organisation of surveying works.
Go to article

Editorial office

Editor-in-Chief
Elżbieta Bielecka, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland


Editorial Advisory Board
Aleksandra Bujakiewicz, Warsaw University of Technology, Poland
Beata Medynska-Gulij, Adam Mickiewicz University (UAM), Poland
Edward Osada, University of Lower Silesia, Poland
Jan Krynski, Institute of Geodesy and Cartography (IGiK), Poland
Jerzy Rogowski, Warsaw University of Technology, Poland
Zbigniew Wisniewski, University of Warmia and Mazury in Olsztyn (UWM), Poland
Josef Adam, University of Technology and Economics, Hungary
Adam Chrzanowski, University of New Brunswick, Canada
Dorota Grejner-Brzezińska, The Ohio State University, USA
Jaakko Makinen, Finnish Geodetic Institute, Finland
Helmut Moritz, Graz University of Technology, Austria
Heinz Ruther, University of Cape Town, RSA
Michael Sideris, University of Calgary, Canada
Gabriel Strykowski, Technical University of Denmark, Denmark
Jaroslaw S. Yatskiv, Main Astronomical Observatory, Ukraine


Editors
Statistical
Pawel Kamiński, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland


Technical Editors
Karolina Krawczyk, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland
Krzysztof Bielecki, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland

 

Contact

Editor-in-Chief
Elżbieta Bielecka
e-mail:
ebielecka@wat.edu.pl
gik@igik.edu.pl

Instructions for authors

GEODESY AND CARTOGRAPHY is a semiannually journal publishing peer-reviewed articles with original solutions of theoretical, experimental or applicable problems in the field of geodesy, surveying engineering, cartography, photogrammetry and related disciplines. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops.
Legal requirements
The author(s) guarantee(s) that the manuscript will not be published elsewhere in any language without the consent of the copyright owners, that the rights of the third parties will not be violated, and that the publisher will not held legally responsible should there be any claims for compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Manuscript submission
Submission of the manuscript implies: that the work has not been published before (except in form of an abstract or as a part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institution where the work was carried out.
Articles should be submitted on line www.editorialsystem.com/geocart/
In case the manuscript has more than one author its submission should include the list specifying contribution of each author to the manuscript with indicating who is the author of the concept, assumptions, research methodology, data processing. Major responsibility is of the author submitting the manuscript.
The Editor will counteract in GEODESY AND CARTOGRAPHY against Ghostwriting, i.e. when someone substantially contributed to the preparation of the manuscript but has neither been included to the list of authors nor his role is mentioned in the acknowledgements as well as Ghost authorship, i.e. when the author/co-author did not contribute to the manuscript or his contribution is negligible. Any detected case of Ghostwriting and Ghost authorship will be exposed and the appropriate subjects, i.e. employers, scientific organisations, associations of editors etc, will be informed.
Electronic submission of a manuscript
Use the template to format your paper.

Layout guidelines:- use a normal, plain Times Roman font for text, italics for textual emphasis, bold for mathematical vectors,
- use the table functions of your word processing program, not spreadsheets, to make tables,
- use the equation editor of your word processing program for equations,
- place all figures with figure legends and tables with table legends in the manuscript,
- submit also all figures as separate files.
Data format:
Save your manuscript in RTF or DOC Microsoft Word for Windows format.
Illustrations:
Figures should be provided in the vector graphics or JPG or TIF (specifically for halftone illustrations) formats will be accepted. The filename should include the figure number. Figure legends should be included in the text and not in the figure file. Scanned line drawings should be digitised with a minimum resolution of 800 dpi relative to the final figure size. For digital halftones, 300 dpi is usually sufficient. Non-standard fonts used in the vector graphics must be included. Please do not draw with hairlines. The minimum line width is 0.2 mm (0.567 pt) relative to the final size.
Manuscript preparation
Manuscripts should be typed in single-line spacing throughout on the A4 sheet with 2.5 cm margins .
1. Title page:
- a concise and informative title
- the name(s) of the author(s)
- the name(s) and address(es) of the affiliation(s) of the author(s)
- the e-mail address, telephone and fax numbers of the communicating author
2. Abstract: the paper must be preceded by a sufficiently informative abstract presenting the most important results and conclusions.
3. Keywords: three to five keywords should be supplied.
4. Introduction: should state the purpose of the investigation and give a short review of the pertinent literature.
5. Main text: including method and input data (working details must be given concisely; well-known operations should not be described in detail); results presented in tabular or graph form, with appropriate statistical evaluation, discussion of results - statement of conclusions drawn from the work, conclusions.
6. Acknowledgements: should be brief and consist of grant or individuals that require acknowledgement.
The names of funding organizations or institutions providing data should be given in full.
7. References: the list of references should be in alphabetical order and should only include works that are cited in the text and that have been published or accepted for publication. Personal communications could only be mentioned in the text. References should consist of the complete list of authors and should be given in the following form:
In the text, references should be cited by author(s) last name and year: e.g. (Beutler, 2003a), (Featherstone and Kirby, 2000), (Schwarz et al., 1990), (Sjöberg et al., 2000; Strykowski, 2001b; 2002).
8. Formulae and symbols: must be written legibly and will be typeset in italics. One-layer indexing is preferable. Numbering of formulae, if necessary should be given in brackets fitted to the right margin.
9. Footnotes: to the text should be numbered consecutively and placed on the bottom of the page to which they refer. Footnotes to the tables should be indicated by superscript lowercase letters.
10. Illustrations and tables: all figures (photographs, graphs or diagrams) and tables should be cited in the text and each numbered consecutively throughout. Lowercase roman letters should identify figure parts. Figure legends must be brief and must contain self-sufficient explanations of the illustrations. Each table should have a title and a legend explaining any abbreviation used in that table.
11. Units: SI units must be used.
12. Running head: consisting of at most 60 characters a concise banner representing the title of the article must be submitted by the author(s).
Proofreading
Proofreading is the responsibility of the author. Corrections should be clear; standard correction marks should be used. Corrections that lead to a change in the page layout should be avoided. The author is entitled to formal corrections only. Substantial changes in content, e.g. new results, corrected values, title and authorship are not allowed without the approval of the editor. In such case please contact the Editor-in-chief before returning the proofs.
References formatting
a. Journal Article (one author)
Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.
b. Journal Article (two or more authors)
Cudak, M. and Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y.
c. Journal article from an online database
Czajgucki Z., Zimecki M. & Andruszkiewicz R. (2006, December). The immunoregulatory effects of edeine analogues in mice [Abstract]. Cell. Mol. Biol. Lett. 12(3), 149-161. Retrieved December 6.
d. Book (one author)
Baxter, R. (1982). Exactly Solvable Models in Statistical Mechanics. New York: Academic Press.
e. Book (two or more authors)
Kleiner, F.S., Mamiya C.J. and Tansey R.G. (2001). Gardner’s art through the ages (11th ed.). Fort Worth, USA: Harcourt College Publishers.
f. Book chapter or article in an edited book
Roll, W.P. (1976). ESP and memory. In J.M.O. Wheatley and H.L. Edge (Eds.), Philosophical dimensions of parapsychology (pp. 154-184). Springfield, IL: American Psychiatric Press.
g. Proceedings from a conference
Field, G. (2001). Rethinking reference rethought. In Revelling in Reference: Reference and Information Services Section Symposium, 12-14 October 2001 (pp. 59-64). Melbourne, Victoria, Australia: Australian Library and Information Association.
h. ebook
Johnson, A. (2000). Abstract Computing Machines. Springer Berlin Heidelberg. Retrieved March 30, 2006, from SpringerLink http://springerlink.com/content/w25154. DOI: 10.1007/b138965.
i. Report
Osgood, D. W., and Wilson, J. K. (1990). Covariation of adolescent health problems. Lincoln: University of Nebraska. (NTIS No. PB 91-154 377/AS).
j. Government publication
Ministerial Council on Drug Strategy. (1997). The national drug strategy: Mapping the future. Canberra: Australian Government Publishing Service.

This page uses 'cookies'. Learn more