Nauki Techniczne

Archives of Acoustics

Zawartość

Archives of Acoustics | 2018 | No 2 |

Abstrakt

Surface Acoustic Wave (SAW) devices like delay lines, filters, resonators etc., are nowadays extensively used as principal solid state components in many electronic applications and chemical vapour sensors. To bring out the best from these SAW devices, computational design and modelling are resorted too. The present paper proposes the modelling of 400 MHz ST-X Quartz based SAW delay line, by three models namely, Impulse Response Model (IRM), Crossed-field Equivalent Circuit Model (ECM) and Couplingof- Modes (COM) model. MATLABr is employed as a computational tool to model the experimental output of the SAW device. A comparative discussion of the modelled device results is also provided.
Przejdź do artykułu

Abstrakt

Self-aligning roller bearings are an integral part of the industrial machinery. The proper analysis and prediction of the various faults that may happen to the bearing beforehand contributes to an increase in the working life of the bearing. This study aims at developing a novel method for the analysis of the various faults in self-aligning bearings as well as the automatic classification of faults using artificial neural network (ANN) and deep neural network (DNN). The vibration data is collected for six different faults as well as for the healthy bearing. Empirical mode decomposition (EMD) followed by Hilbert Huang transform is used to extract instantaneous frequency peaks which are used for fault analysis. Time domain and time-frequency domain features are then extracted which are used to implement the neural networks through the pattern recognition tool in MATLAB. A comparative study of the outputs from the two neural networks is also performed. From the confusion matrix, the efficiency of the ANN has been found to be 95.7% and using DNN has been found to be 100%.
Przejdź do artykułu

Abstrakt

Natural sounds are essential elements for ecosystems, and therefore necessary for many ecological functions, forming what is called “natural soundscapes”. The Natural Reserve Laguna del Portil (NRLP), located in the southwest of the Iberian Peninsula, is an ecosystem which was declared by Spanish authorities as Protected Natural Reserve. In the south area of the NRLP, there is a regional road with high traffic intensity, which affects the soundscapes of this natural reserve. In this study, the road potential noise impact on the natural sounds of the NLRP is analysed. This analysis was done both in winter and summer, and also using two independent methods: 1) spatial sampling measures in 43 different points of the NRL; and 2) noise mapping using noise levels prediction software. From the comparison of the results of both methods and seasons the following conclusions were reached: 1) an approach to the natural soundscape of NRLP both in winter and summer, 2) the acoustic impact of the road on the NRLP, and 3) the variation of the traffic noise depending on the distance to the road, and its seasonal variation. This study could be to improve the management of the NRLP and to help to preserve the natural soundscape of the reserve.
Przejdź do artykułu

Abstrakt

Micro perforated panel (MPP) absorber is a new form of acoustic absorbing material in comparison with porous ones. These absorbers are considered as next generation ones and the best alternative for traditional porous materials like foams. MPP combined with a uniform air gap constructs an absorber which has high absorption but in a narrow bandwidth of frequency. This characteristic makes MPPAs insufficient for practical purposes in comparison with porous materials. In this study instead of using a uniform air gap behind the MPP, the cavity is divided into several partitions with different depth arrangement which have parallel faces. This method improves the absorption bandwidth to reach the looked for goal. To achieve theoretical absorption of this absorber, equivalent electro-acoustic circuit and Maa’s theory (Maa, 1998) are employed. Maa suggested formulas to calculate MPP’s impedance which show good match with experimental results carried out in previous studies. Electro-acoustic analogy is used to combine MPP’s impedance with acoustic impedances of complex partitioned cavity. To verify the theoretical analyses, constructed samples are experimentally tested via impedance tube. To establish the test, a multi-depth setup facing a MPP is inserted into impedance tube and the absorption coefficient is examined in the 63–1600 Hz frequency range. Theoretical results show good agreement compared to measured data, by which a conclusion can be made that partitioning the cavity behind MPP into different depths will improve absorption bandwidth and the electro-acoustic analogy is an appropriate theoretical method for absorption enhancement research, although an optimisation process is needed to achieve best results to prove the capability of this absorber. The optimisation process provides maximum possible absorption in a desired frequency range for a specified cavity configuration by giving the proper cavity depths. In this article numerical optimisation has been done to find cavity depths for a unique MPP.
Przejdź do artykułu

Abstrakt

The tests reported in this paper were carried out to evaluate the exposure of soldiers to noise at operator and control positions during military field exercises. The tests were conducted during firing from a T-72 tank, a BWP-1 Infantry Fighting Vehicle, antitank guided missiles, a ZU-23-2K anti-aircraft gun, and a 2S1 GOZDZIK howitzer. The evaluation of noise exposure showed that the limit values of sound pressure level, referred to by both Polish occupational noise protection standards and the Pfander and Dancer hearing damage risk criteria developed for military applications, were repeatedly exceeded at the tested positions. Despite of the use of tank crew headgear, the exposure limit values of sound pressure level were exceeded for the crew members of the T-72 tank, the BWP-1 infantry fighting vehicle, and the 2S1 GOZDZIK howitzer. The results show that exposure of soldiers to noise during military field exercises is a potentially high hearing risk factor.
Przejdź do artykułu

Abstrakt

The article presents the results concerning the use of clustering methods to identify signals of acoustic emission (AE) generated by partial discharge (PD) in oil-paper insulation. The conducted testing featured qualitative analysis of the following clustering methods: single linkage, complete linkage, average linkage, centroid linkage and Ward linkage. The purpose of the analysis was to search the tested series of AE signal measurements, deriving from three various PD forms, for elements of grouping (clusters), which are most similar to one another and maximally different than in other groups in terms of a specific feature or adopted criteria. Then, the conducted clustering was used as a basis for attempting to assess the effectiveness of identification of particular PD forms that modelled exemplary defects of the power transformer’s oil-paper insulation system. The relevant analyses and simulations were conducted using the Matlab estimation environment and the clustering procedures available in it. The conducted tests featured analyses of the results of the series of measurements of acoustic emissions generated by the basic PD forms, which were obtained in laboratory conditions using spark gap systems that modelled the defects of the power transformer’s oil-paper insulation.
Przejdź do artykułu

Abstrakt

A new method for determining optimum dimension ratios for small rectangular rooms has been presented. In a theoretical model, an exact description of the room impulse response was used. Based on the impulse response, a frequency response of a room was calculated to find changes in the sound pressure level over the frequency range 20–200 Hz. These changes depend on the source and receiver positions, thus, a new metric equivalent to an average frequency response was introduced to quantify the overall sound pressure variation within the room for a selected source position. A numerical procedure was employed to seek a minimum value of the deviation of the sound pressure level response from a smooth fitted response determined by the quadratic polynomial regression. The most smooth frequency responses were obtained when the source was located at one of the eight corners of a room. Thus, to find the best possible dimension ratios, in the numerical procedure the optimal source position was assumed. Calculation results have shown that optimum dimension ratios depend on the room volume and the sound damping inside a room, and for small and medium volumes these ratios are roughly 1 : 1.48 : 2.12, 1 : 1.4 : 1.89 and 1 : 1.2 : 1.45. When the room volume was suitably large, the ratio 1 : 1.2 : 1.44 was found to be the best one.
Przejdź do artykułu

Abstrakt

The cuboidal room acoustics field is modelled with the Fourier method. A combination of uniform, impedance boundary conditions imposed on walls is assumed, and they are expressed by absorption coefficient values. The absorption coefficient, in the full range of its values in the discrete form, is considered. With above assumptions, the formula for a rough estimation of the cuboidal room acoustics is derived. This approximate formula expresses the mean sound pressure level as a function of the absorption coefficient, frequency, and volume of the room separately. It is derived based on the least-squares approximation theory and it is a novelty in the cuboidal room acoustics. Theoretical considerations are illustrated via numerical calculations performed for the 3D acoustic problem. Quantitative results received with the help of the approximate formula may be a point of reference to the numerical calculations.
Przejdź do artykułu

Abstrakt

An alternative method for analysis of acoustic emission (AE) signals generated by partial discharges (PD), based on a correlation between voltage phase run and AE pulses, so called phase resolved PD pattern (PRPD), is presented in the paper. PRPD pattern is a well-known analysis tool commonly used in such PD diagnostic methods as conventional electrical and UHF ones. Moreover, it yields various signal analysis abilities and allows a direct correlation indication between measurement results achieved using different methods. An original PRPD measurement methodology applied for AE method as well as some exemplary measurement results and further data analysis capabilities are presented in the paper. Also a comparative analysis of PRPD patterns achieved using various measurement methods and different PD source configurations have been investigated. All presented experiments were done under laboratory conditions using PD model sources immersed in the insulation oil. The main purpose of the presented research is to indicate an all-embracing analytical tool that yields an ability to direct comparison (qualitative as well as quantitative) of the AE measurement results with other commonly applied PD measurement methods. The presented results give a solid fundamental for further research work concerning a direct correlation method for AE and other described in the paper diagnostic techniques, mainly in order to continue PD phenomena analysis and assessment in real life high voltage apparatus insulation systems under normal onsite operation conditions.
Przejdź do artykułu

Abstrakt

Speech emotion recognition is an important part of human-machine interaction studies. The acoustic analysis method is used for emotion recognition through speech. An emotion does not cause changes on all acoustic parameters. Rather, the acoustic parameters affected by emotion vary depending on the emotion type. In this context, the emotion-based variability of acoustic parameters is still a current field of study. The purpose of this study is to investigate the acoustic parameters that fear affects and the extent of their influence. For this purpose, various acoustic parameters were obtained from speech records containing fear and neutral emotions. The change according to the emotional states of these parameters was analyzed using statistical methods, and the parameters and the degree of influence that the fear emotion affected were determined. According to the results obtained, the majority of acoustic parameters that fear affects vary according to the used data. However, it has been demonstrated that formant frequencies, mel-frequency cepstral coefficients, and jitter parameters can define the fear emotion independent of the data used.
Przejdź do artykułu

Abstrakt

The aim of this study was to create a single-language counterpart of the International Speech Test Signal (ISTS) and to compare both with respect to their acoustical characteristics. The development procedure of the Polish Speech Test Signal (PSTS) was analogous to the one of ISTS. The main difference was that instead of multi-lingual recordings, speech recordings of five Polish speakers were used. The recordings were cut into 100–600 ms long segments and composed into one-minute long signal, obeying a set of composition rules, imposed mainly to preserve a natural, speech-like features of the signal. Analyses revealed some differences between ISTS and PSTS. The latter has about twice as high volume of voiceless fragments of speech. PSTS’s sound pressure levels in 1/3-octave bands resemble the shape of the Polish long-term average female speech spectrum, having distinctive maxima at 3–4 and 8–10 kHz which ISTS lacks. As PSTS is representative of Polish language and contains inputs from multiple speakers, it can potentially find an application as a standardized signal used during the procedure of fitting hearing aids for patients that use Polish as their main language.
Przejdź do artykułu

Abstrakt

The shipping noise near channels and ports is an important contribution to the ambient noise level, and the depth of these sites is often less than 100 m. However less attention has been paid to the measurement in shallow water environments (Brooker, Humphrey, 2016). This paper presents extensive measurements made on the URN (underwater radiated noise) of a small fishing boat in the South China Sea with 87 m depth. The URN data showed that the noise below 30 Hz was dominated by the background noise. The transmission loss (TL) was modelled with FEM (finite element method) and ray tracing according to the realistic environmental parameters in situ. The discrepancy between the modelled results and the results using simple law demonstrates both sea surface and bottom have significant effect on TL for the shallow water, especially at low frequencies. Inspired by the modelling methodology in AQUO (Achieve QUieter Oceans) project (Audoly et al., 2015), a predicted model applied to a typical fishing boat was built, which showed that the URN at frequencies below and above 100 Hz was dominated by non-cavitation propeller noise and mechanical noise, respectively. The agreement between predicted results and measured results also demonstrates that this modelling methodology is effective to some extent.
Przejdź do artykułu

Abstrakt

This paper proposes an active noise control (ANC) application to attenuate siren noise for the patient lying inside ambulance with no sound proofing. From the point of cost effectiveness, a local ANC system based on feedforward scheme is considered. Further, to handle the limitation of limited Zone of Silence (ZoS), the ANC based on virtual sensing is explored. The simulations are done in MATLAB for the recorded ambulance siren noise signal. The results indicate that ANC can be an effective solution for creating a silent environment for the patient.
Przejdź do artykułu

Abstrakt

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Przejdź do artykułu

Abstrakt

The church of Santa Cruz de Oleiros, Spain (1967) shows architect Miguel Fisac’s perception of sacred space after the Second Vatican Council. In this place of worship, the architect responded to the new liturgical guidelines combining geometry and architectural forms with the material of the moment, concrete. However, ordinary religious celebrations reveal acoustic deficiencies for the main use of the building. This fact is corroborated by acoustic measurements in situ. With a methodology that uses simulation techniques for the sound field, the analysis of the current acoustic behaviour of the room will serve as the basis for an acoustic rehabilitation proposal aimed at improving the acoustic conditions and so, the functionality of the church.
Przejdź do artykułu

Abstrakt

This paper analyses the changes in transfer characteristics of the vocal tract when closed by a mask, i.e. a chamber. The analysis was performed in two ways: by analytical estimation and by measurements in the vocal tract physical model for the case of mask with inner volume V = 430 cm3, corresponding to the oxygen masks used in combat airplanes. It was shown that closing the vocal tract with a mask cavity increases the first formant frequency by about 10% in front and high vowels (/e/, /i/, and /u/) and the frequencies of the first two formants by about 5% in the remaining two vowels (/a/ and /o/). It was also revealed that longitudinal and transversal resonances in the mask chamber can lead to errors in the recognition of the vowel formant frequencies. The results point to the need for additional knowledge about resonances in mask application.
Przejdź do artykułu

Abstrakt

Problems associated with designing silencers are presented. Results of direct tests of silencers for cooperation with systems of axial fans, as well as results of numerical tests of a two stage acoustic silencer, are given. The numerical tests enabled determining the distribution of acoustic field inside the silencer and in the surrounding area. In those tests A sound insertion losses for different variants of installation inside the silencer, as well as for two different types of absorbing material used to fill the silencer walls, were determined. Impact of design features of silencers on effectiveness of noise reduction is described. Also, a technical sketch of a universal silencer with significant noise reduction (DipS = 39:1 dB) which can be successfully used in many ventilation systems is presented
Przejdź do artykułu

Abstrakt

The present paper is comparing the results of research studies carried out for three road acoustic screens of different design and different number of damping layers. For the tests, we selected timber or steel screens with a traditional multilayer structure and also one innovative type of simplified design. With respect to particular panels, their sound absorption properties were investigated in the reverberation chamber after they had been subjected to simulated weathering. In the process, two screens were subjected to the aging tests of 50–500 cycles in a special climatic chamber, and the innovative screens were subjected to 1000 cycles. The procedure was repeated every 50 or 100 cycles in order to obtain the changes of acoustic characteristics. The changes taking place in the absorbing material were also investigated with the use of scanning electron microscopy method (SEM). Basing on the obtained results and on the statistical analysis, the capability to maintain acoustic properties by the panels during their service life in natural conditions was estimated. For that purpose, linear statistical models were worked out, which were then applied to estimate the value of the single number sound absorption coefficient after successive aging cycles as well as the predicted time periods of acoustic class changes.
Przejdź do artykułu

Redakcja

Editorial Board
Editor-in-Chief
Andrzej Nowicki (Institute of Fundamental Technological Research PAN, Warszawa)
Deputy Editor-in-Chief
Barbara Gambin (Institute of Fundamental Technological Research PAN, Warszawa)
Associate Editors
Genaral linear acoustics and physical acoustics
• Wojciech P. Rdzanek (University of Rzeszów, Rzeszów)
• Anna Snakowska (AGH University of Science and Technology, Kraków)
Architectural acoustics
• Tadeusz Kamisiński (AGH University of Science and Technology, Kraków)
Musical acoustics and psychological acoustics
• Andrzej Miśkiewicz (The Fryderyk Chopin University of Music, Warszawa)
• Anna Preis (Adam Mickiewicz University, Poznań)
Underwater acoustics and nonlinear acoustics
• Grażyna Grelowska (Gdańsk University of Technology, Gdańsk)
Speech, Computational acoustics and signal processing
• Ryszard Gubrynowicz (Polish-Japanese Institute of Information Technology, Warszawa)
Ultrasonics, transducers and instrumentation
• Krzysztof Opieliński (Wrocław University of Technology, Wrocław)
Electroacoustics
• Jan Żera (Warsaw University of Technology, Warszawa)
Noise control and environmental acoustics
• Jan Adamczyk (AGH University of Science and Technology, Kraków)
• Mirosław Meissner (Institute of Fundamental Technological Research PAN, Warszawa)
• Janusz Kompała (Central Mining Institute, Katowice)
Secretary
• Izabela Ewa Mika

Kontakt

Archives of Acoustics
Institute of Fundamental Technological Research
5b Pawińskiego Str.,
02-106 Warszawa, Poland
Phone: (48) (22) 826 12 81 ext. 206
Fax: (48) (22) 826 98 15
Email: akustyka@ippt.gov.pl

Support Contact
Paweł Witkowski
Email: intools@intools.pl

Instrukcje dla autorów

Author Guidelines
• Manuscripts intended for publication in Archives of Acoustics should be submitted in pdf format by an on-line procedure.
• Manuscript should be original, and should not be submitted either previously or simultaneously elsewhere, neither in whole, nor in part.
• Submitted papers must be written in good English and proofread by a native speaker.
• Basically, the papers should not exceed 40 000 typographic signs.
• Postal addresses, affiliations and email addresses for each author are required.
• Detailed information see Article Requirements.
• Manuscript should be accompanied by a cover letter containing the information:
o why the paper is submitted to ARCHIVES OF ACOUSTICS,
o suggestion on the field of acoustics related to the topic of the submitted paper,
o the statement that the manuscript is original, the submission has not been previously published, nor was sent to another journal for consideration,
o 3–5 names of suggested reviewers together with their affiliations, full postal and e-mail addresses; at least 3 suggested reviewers should be affiliated with other scientific institutions than the affiliations of the authors,
o author’s suggestion to classification of the paper as the research paper, review paper or technical note.

Article Requirements
1. At submission time only a PDF file is required. After acceptance, authors must submit all source material (see information about Figures). Authors can use their preferred manuscript-preparation software. The journal itself is produced in LaTeX, so accepted articles will be converted to LaTeX at production time.
2. The title of the paper should be as short as possible.
3. Full names and surnames should be given.
4. The full postal address of each affiliation, including the country name should be provided. Affiliations should contain the full postal address, as well as an e-mail address of one author designated as corresponding author.
5. The text should be preceded by a concise abstract (less than 200 words).
6. Keywords should be given.
7. The formulae to be numbered are those referred to in the paper, as well as the final formulae.
8. All notations should be written very distinctly.
9. References in the text (author(s) and year of publication) are to be cited between parentheses.
Items appearing in the reference list should be complete, including surname and the initials of the first name of the author, the full title of the paper/book in English followed by the information on the original paper language. In case of a book, the publisher's name, the place and year of publication should be given. In case of a periodical, the full title of the periodical, consecutive volume number, current issue number, pages, and year of publication should be given. All references in the bibliography should be cited in the text, and arranged in alphabetical order by authors' last name.
For more information on references see http://acoustics.ippt.gov.pl/public/Instructions.pdf.
10. Figures must be of publication quality. Each figure should be saved in separate file and captioned and numbered so that it can float. After acceptance, Authors will need to submit the original source files for all photos, diagrams and graphs in manuscript.
For diagrams and graphs vector EPS or vector PDF files are the most useful. Make sure that what you're saving is vector graphics and not a bitmap. Please also include the original data for any plots. This is particularly important if you are unable to save Excel-generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets instead.
Photographs should be high-quality – with resolution no lower than 300 dpi.
Pack all figure files into a single archive (zip, tar, rar or other format) and then upload on the magazine web site.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji