Details

Title

A Model for Abnormal Grain Growth in Nano-Crystalline Materials Based on Zener Drag Force

Journal title

Archives of Metallurgy and Materials

Yearbook

2012

Numer

No 1 March

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Commitee on Metallurgy of Polish Academy of Sciences

Date

2012

Identifier

ISSN 1733-3490

References

Dannenberg R. (2000), In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films, Thin Solid Films, 370, 54, doi.org/10.1016/S0040-6090(99)00947-5 ; Afshar A. (2008), Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process, Scripta Materialia, 58, 966, doi.org/10.1016/j.scriptamat.2008.01.029 ; Hibbard G. (2008), Grain boundary migration during abnormal grain growth in nanocrystalline Ni, Materials Science and Engineering A, 494, 232, doi.org/10.1016/j.msea.2008.04.054 ; Ames M. (2008), Unraveling the nature of room temperature grain growth in nanocrystalline materials, Acta Materialia, 56, 4255, doi.org/10.1016/j.actamat.2008.04.051 ; Hibbard G. (2002), An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni, Scripta Materialia, 47, 83, doi.org/10.1016/S1359-6462(02)00098-2 ; Ebrahimi F. (2006), Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys, Scripta Materialia, 55, 263, doi.org/10.1016/j.scriptamat.2006.03.053 ; Klement U. (2007), Individual grain orientations and texture development of nanocrystalline electrodeposits showing abnormal grain growth, Journal of Alloys and Compounds, 434-435, 714, doi.org/10.1016/j.jallcom.2006.08.118 ; Fan G. (2006), Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys, Acta Materialia, 54, 4781, doi.org/10.1016/j.actamat.2006.06.016 ; Yang D.-Y. (2009), Suppression of abnormal grain growth in WC-Co via pre-sintering treatment, Int. Journal of Refractory Metals & Hard Materials, 27, 90, doi.org/10.1016/j.ijrmhm.2008.04.001 ; Hattar K. (2008), Defect structures created during abnormal grain growth in pulsed-laser deposited nickel, Acta Materialia, 56, 794, doi.org/10.1016/j.actamat.2007.10.027 ; Razavi-Tousi S. (2009), Stabilization of nanostructured materials using fine inert ceramic particles, Ceramic International, doi.org/10.1016/j.ceramint.2009.09.018 ; Razavi-Tousi S. (2009), Effect of milling time and addition of alumina powder on the structural properties and fracture surface of nanocrystalline Al, Materials Science Poland, 27, 875. ; Razavi-Tousi S. (2009), Production of Al-20 wt.% Al2O3 composite powder using high energy milling, Powder Technology, 192, 346, doi.org/10.1016/j.powtec.2009.01.016 ; Tjong S. (2004), Nanocrystalline materials and coatings, Materials Science and Engineering R, 45, 1, doi.org/10.1016/j.mser.2004.07.001 ; Grong O. (2002), Microstructural modeling in metals processing, Progress in Material Science, 24, 163, doi.org/10.1016/S0079-6425(00)00004-9 ; Hillert M. (1965), On the theory of normal and abnormal grain growth, Acta Materialia, 13, 227, doi.org/10.1016/0001-6160(65)90200-2 ; Rollett A. (1989), Acta Materialia, 37, 1227, doi.org/10.1016/0001-6160(89)90117-X ; Hunderi O. (1981), Computer simulation of stagnation in grain growth, Acta Materialia, 29, 1737, doi.org/10.1016/0001-6160(81)90007-9 ; Smith C. (1948), Grains, phases and interfaces: an interpretation of microstructure, TRANS. Metall. Soc. A. I. M. E, 175, 15. ; Humphreys F. (1995), Recrystallization and related phenomena:. ; Rollett A. (1992), Computer simulation of recrystalilzation-III. Influence of a dispersion of fine particles, Acta Materialia, 40, 3475, doi.org/10.1016/0956-7151(92)90062-J ; Novikov V. (2008), Microstructure stabilization in bulk nanocrystalline materials: Analytical approach and numerical modeling, Materials Letters, 62, 3748, doi.org/10.1016/j.matlet.2008.04.048 ; Anand L. (1975), The relationship between the size of cementite particles and the subgrain size in quenched-and-tempered steel, Metallurgical Transaction A, 6, 928, doi.org/10.1007/BF02672318 ; Hellman P. (1975), Effect of Second-Phase Particles on. Grain Growth, Scand Journal of Metals, 4, 211. ; Haghighat S. (2008), Investigation of limiting grain size and microstructure homogeneity in the presence of second phase particles using the Monte Carlo method, journal of materials processing technology, 195, 195, doi.org/10.1016/j.jmatprotec.2007.04.132 ; Hazzledine P. (1990), Computer simulation of Zener pinning, Philosophical Magazine A, 61, 579, doi.org/10.1080/01418619008231936 ; Maazi N. (2002), Consideration of Zener drag effect by introducing a limiting radius for neighbourhood in grain growth simulation, Journal of Crystal Growth, 243, 361, doi.org/10.1016/S0022-0248(02)01420-3 ; Srolovitz D. (1984), Computer simulation of grain growth-III. Influence of a particle dispersion, Acta Metal, 32, 1429, doi.org/10.1016/0001-6160(84)90089-0 ; Riege S. (1999), Simulation of the influence of particles on grain structure evolution in two-dimensional systems and thin films, Acta Materialia, 47, 1879, doi.org/10.1016/S1359-6454(99)00039-7 ; Hillert M. (1988), Inhibition of grain growth by second-ohase particles, Acta Metal, 36, 3177, doi.org/10.1016/0001-6160(88)90053-3 ; Anderson M. (1989), Inhibition of grain growth by second phase particles: Three dimensional Monte Carlo computer simulations, Scripta Metall, 23, 753, doi.org/10.1016/0036-9748(89)90525-5 ; Bréchet Y. (2005), A note on grain size dependent pinning, Scripta Materialia, 52, 1299, doi.org/10.1016/j.scriptamat.2005.02.021 ; Timms L. (2002), Processing of Al2O3/SiC nanocomposites—part 2: green body formation and sintering, Journal of the European Ceramic Society, 22, 1569, doi.org/10.1016/S0955-2219(01)00497-6 ; Hibbard G. (2006), Thermal stability of electrodeposited nanocrystalline Ni-Co alloys, Materials Science and Engineering A, 433, 195, doi.org/10.1016/j.msea.2006.06.096

DOI

10.2478/v10172-011-0156-z

×