Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 69
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We analysed the empirical importance of the capital flows in processes of economic convergence of the CEE region. We depart from reference net measures of capital flow reflecting the level of development of the financial system and focus on gross capital flow. Our econometric model is based on Seemingly Unrelated Regression Equation (SURE) elaborated by Arnold Zellner. This environment seems an alternative to standard panel regression, because it enables cross-country heterogeneity of parameters of interest (like pace of convergence). We tested several restrictions of the unconstrained SURE model, leading to simpler specifications that would allow for regional homogeneity of the role of a particular factor (like capital flows) in growth fluctuations and β-type convergence.
Go to article

Authors and Affiliations

Piotr Adamczyk
1
Mateusz Pipień
1

  1. Cracow University of Economics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Fitzhugh-Nagumo model (FN model), which is successfully employed in modeling the function of the so-called membrane potential, exhibits various formations in neuronal networks and rich complex dynamics. This work deals with the problem of control and synchronization of the FN reaction-diffusion model. The proposed control law in this study is designed to be uni-dimensional and linear law for the purpose of reducing the cost of implementation. In order to analytically prove this assertion, Lyapunov’s second method is utilized and illustrated numerically in one- and/or two-spatial dimensions.
Go to article

Bibliography

[1] S.K. Agrawal and S. Das: A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73(1), (2013), 907–919, DOI: 10.1007/s11071-013- 0842-7.
[2] B. Ambrosio and M.A. Aziz-Alaoui: Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Computers & Mathematics with Applications, 64(5), (2012), 934–943, DOI: 10.1016/j.camwa.2012.01.056.
[3] B. Ambrosio, M.A. Aziz-Alaoui, and V.L.E. Phan: Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems, 23(9), (2018), 3787–3797, DOI: 10.3934/dcdsb.2018077.
[4] B. Ambrosio, M. A. Aziz-Alaoui, and V.L.E. Phan: Large time behaviour and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type. IMA Journal of Applied Mathematics, 84(2), (2019), 416–443, DOI: 10.1093/imamat/hxy064.
[5] M. Aqil, K.-S. Hong, and M.-Y. Jeong: Synchronization of coupled chaotic FitzHugh–Nagumo systems. Communications in Nonlinear Science and Numerical Simulation, 17(4), (2012), 1615–1627, DOI: 10.1016/j.cnsns. 2011.09.028.
[6] S. Bendoukha, S. Abdelmalek, and M. Kirane: The global existence and asymptotic stability of solutions for a reaction–diffusion system. Nonlinear Analysis: Real World Applications. 53, (2020), 103052, DOI: 10.1016/j.nonrwa.2019.103052.
[7] X.R. Chen and C.X. Liu: Chaos synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25(03), (2011), 407–415, DOI: 10.1142/S0217979211058018.
[8] D. Eroglu, J.S.W. Lamb, and Y. Pereira: Synchronisation of chaos and its applications. Contemporary Physics, 58(3), (2017), 207–243, DOI: 10.1080/00107514.2017.1345844.
[9] R. Fitzhugh: Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations. The Journal of General Physiology, 43(5), (1960), 867–896, DOI: 10.1085/jgp.43.5.867.
[10] P.Garcia, A.Acosta, and H. Leiva: Synchronization conditions for masterslave reaction diffusion systems . EPL, 88(6), (2009), 60006.
[11] A.L. Hodgkin and A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 117, (1952), 500–544, DOI: 10.1113/jphysiol.1952.sp004764.
[12] T. Kapitaniak: Continuous control and synchronization in chaotic systems. Chaos, Solitons & Fractals, 6 (1995), 237–244, DOI: 10.1016/0960- 0779(95)80030-K.
[13] A.C.J. Luo: Dynamical System Synchronization. Springer-Verlag, New York. 2013.
[14] D. Mansouri, S. Bendoukha, S. Abdelmalek, and A. Youkana: On the complete synchronization of a time-fractional reaction–diffusion system with the Newton–Leipnik nonlinearity. Applicable Analysis, 100(3), (2021), 675–694, DOI: 10.1080/00036811.2019.1616694.
[15] F. Mesdoui, A. Ouannas, N. Shawagfeh, G. Grassi, and V.-T. Pham: Synchronization Methods for the Degn-Harrison Reaction-Diffusion Systems. IEEE Access., 8 (2020), 91829–91836, DOI: 10.1109/ACCESS. 2020.2993784.
[16] F. Mesdoui, N. Shawagfeh, and A. Ouannas: Global synchronization of fractional-order and integer-order N component reaction diffusion systems: Application to biochemical models. Mathematical Methods in the Applied Sciences, 44(1), (2021), 1003–1012, DOI: 10.1002/mma.6807.
[17] J. Nagumo, S. Arimoto, and S. Yoshizawa: An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), (1962), 2061– 2070, DOI: 10.1109/JRPROC.1962.288235.
[18] L.H. Nguyen and K.-S. Hong: Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Mathematics and Computers in Simulation, 82(4), (2011), 590–603, DOI: 10.1016/j.matcom. 2011.10.005.
[19] Z.M. Odibat: Adaptive feedback control and synchronization of nonidentical chaotic fractional order systems. Nonlinear Dynamics, 60(4), (2010), 479–487, DOI: 10.1007/s11071-009-9609-6.
[20] Z.M. Odibat, N. Corson, M.A. Aziz-Alaoui, and C. Bertelle: Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20(1), (2010), 81–97, DOI: 10.1142/S0218127410025429.
[21] A. Ouannas, M. Abdelli, Z. Odibat, X. Wang, V.-T. Pham, G. Grassi, and A. Alsaedi: Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System. Complexity, (2019), Article ID 2832781, DOI: 10.1155/2019/2832781.
[22] A. Ouannas, Z. Odibat, N. Shawagfeh, A. Alsaedi, and B. Ahmad: Universal chaos synchronization control laws for general quadratic discrete systems. Applied Mathematical Modelling, 45 (2017), 636–641, DOI: 10.1016/j.apm.2017.01.012.
[23] A. Ouannas, Z. Odibat, and N. Shawagfeh: A new Q–S synchronization results for discrete chaotic systems. Differential Equations and Dynamical Systems, 27(4), (2019), 413–422, DOI: 10.1007/s12591-016-0278-x.
[24] N. Parekh, V.R. Kumar, and B.D. Kulkarni: Control of spatiotemporal chaos: A study with an autocatalytic reaction-diffusion system. Pramana – J. Phys., 48(1), (1997), 303–323, DOI: 10.1007/BF02845637.
[25] L.M. Pecora and T.L. Carroll: Synchronization in chaotic systems. Physical Review Letter, bf 64(8), (1990), 821–824, DOI: 10.1103/Phys- RevLett.64.821.
[26] M. Srivastava, S.P. Ansari, S.K. Agrawal, S. Das, and A.Y.T. Le- ung: Anti-synchronization between identical and non-identical fractionalorder chaotic systems using active control method. Nonlinear Dynamics, 76 (2014), 905–914, DOI: 10.1007/s11071-013-1177-0.
[27] J. Wang, T. Zhang, and B. Deng: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos, Solitons & Fractals, 31(1), (2007), 30–38, DOI: 10.1016/j.chaos.2005.09.006.
[28] J. Wang, Z. Zhang, and H. Li: Synchronization of FitzHugh–Nagumo systems in EES via H1 variable universe adaptive fuzzy control. Chaos, Solitons & Fractals, 36(5), (2008), 1332–1339, DOI: 10.1016/j.chaos. 2006.08.012.
[29] L. Wang and H. Zhao: Synchronized stability in a reaction–diffusion neural network model. Physics Letters A, 378(48), (2014), 3586–3599, DOI: 10.1016/j.physleta.2014.10.019.
[30] J. Wei and M. Winter: Standingwaves in the FitzHugh-Nagumo system and a problem in combinatorial geometry. Mathematische Zeitschrift, 254(2), (2006), 359–383, DOI: 10.1007/s00209-006-0952-8.
[31] X. Wei, J.Wang, and B. Deng: Introducing internal model to robust output synchronization of FitzHugh–Nagumo neurons in external electrical stimulation. Communications in Nonlinear Science and Numerical Simulation, 14(7), (2009), 3108–3119, DOI: 10.1016/j.cnsns.2008.10.016.
[32] F. Wu, Y. Wang, J. Ma, W. Jin, and A. Hobiny: Multi-channels couplinginduced pattern transition in a tri-layer neuronal network. Physica A: Statistical Mechanics and its Applications, 493 (2018), 54–68, DOI: 10.1016/j.physa.2017.10.041.
[33] K.-N. Wu, T. Tian, and L. Wang: Synchronization for a class of coupled linear partial differential systems via boundary control. Journal of the Franklin Institute, 353(16), (2016), 4062–4073, DOI: 10.1016/ j.jfranklin.2016.07.019.


Go to article

Authors and Affiliations

Adel Ouannas
1
Fatiha Mesdoui
2
Shaher Momani
2 3
Iqbal Batiha
4 3
Giuseppe Grassi
5

  1. Laboratory of Dynamical Systems and Control, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
  2. Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
  3. Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE
  4. Department of Mathematics, Faculty of Science and Technology, Irbid National University, 2600 Irbid, Jordan
  5. Dipartimento Ingegneria Innovazione, Universitadel Salento, 73100 Lecce, Italy
Download PDF Download RIS Download Bibtex

Abstract

When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of water-inrush source generally can obtain relatively accurate results of water-inrush source identification. However, it is often difficult to achieve desired classification results when training samples are imbalanced. Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. Our research is of significance to enriching and improving the theory of prevention and treatment of mine water damage.

Go to article

Authors and Affiliations

Qiong Jiang
Weidong Zhao
Yong Zheng
Jiajia Wei
Chao Wei
Download PDF Download RIS Download Bibtex

Abstract

As one of the most important decision-making problems in fully mechanised mining, the corresponding mining technology pattern is the technical foundation of the working face. Characterised by complexity in a thin seam fully mechanised mining system, there are different kinds of patterns. In this paper, the classification strategy of the patterns in China is put forward. Moreover, the corresponding theoretical model using neural networks applied for patterns decision-making is designed. Based on the above, optimal selection of these patterns under given conditions is achieved. Lastly, the phased implementation plan for automatic mining pattern is designed. As a result of the industrial test, automatic mining for panel 22204 in Guoerzhuang Coal Mine is realised.
Go to article

Bibliography

[1] Li Jianmin, Yan Qingyou, Zhou Zhipo, Application status and development of coal mining technology in China. Coal Science and Technology (10), 55-60 (2012). DOI: https://doi.org/10.13199/j.cst.2012.10.61.lijm.023
[2] Zhao, T., et al., An innovative approach to thin coal seam mining of complex geological conditions by pressure regulation. International Journal of Rock Mechanics and Mining Sciences 71, 249-257 (2014). DOI: https://doi.org/10.1016/j.ijrmms.2014.05.021
[3] Yuan Liang, Research on mining technology and equipment for thin coal seams. Coal Mining (03), 15-18+42 (2011). DOI: https://doi.org/10.13532/j.cnki.cn11-3677/td.2011.03.008349
[4] Satar Mahdevari, Kourosh Shahriar, Mostafa Sharifzadeh, et al. Stability prediction of gate roadways in longwall mining using artificial neural networks 28 (11), 3537-3555 (2017). DOI: https://doi.org/10.1007/s00521-016-2263-2
[5] W. Chen, et al., Optimal Selection of a Longwall Mining Method for a Thin Coal Seam Working Face. Arabian Journal for Science and Engineering 41 (9), 3771-3781(2016). DOI: https://doi.org/10.1007/s13369-016-2260-x
[6] W. Chen PhD thesis, Key technology and decision support system for longwall fully mechanized mining in thin coal seams, China University of Mining and Technology, Xu Zhou, China (2016).
[7] B. Zhang, A. Li, Automated technology research on fully mechanized mining of thin coal seams. Advanced Materials Research 774-776, 1453-1457 (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.774-776.1453
[8] D. Shang, et al., Research on Kinematics Joint Type Mobile Robot Platform for Thin Coal Seam Inspection. Applied Mechanics and Materials 651-653, 818-821 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.651-653.818
[9] J. Ralston, et al., Sensing for advancing mining automation capability: A review of underground automation technology development. International Journal of Mining Science and Technology 24 (3), 305-310 (2014). DOI: https://doi.org/10.1016/j.ijmst.2014.03.003.
[10] C. Wang, S. Tu, Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining. Mathematical Problems in Engineering (893232), 1-10 (2015). DOI: https://doi.org/10.1155/2015/893232
[11] P athegama G. Ranjith, Jian Zhao, Minghe Ju, et al. Opportunities and Challenges in Deep Mining: A Brief Review 3 (4), 546-551 (2017). DOI: https://doi.org/10.1016/J.ENG.2017.04.024
[12] Chen Wei, PhD thesis, Research on comprehensive evaluation model of coal mine safety based on neural network, Capital University of Economics and Business, Bei Jing, China (2010).
[13] Xiaofeng Li, Suying Xiang, Pengfei Zhu, et al. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications. 25(14), (2015). DOI: https://doi.org/10.1142/S0218127415400301
[14] M. Madhiarasan, S.N. Deepa. Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting 48 (4), 449-471 (2017). DOI: https://doi.org/10.1007/s10462-016-9506-6
[15] N amig J. Guliyev, E Vugar. Ismailov. Approximation capability of two hidden layer feedforward neural networks with fixed weights (2018). DOI: https://doi.org/10.1016/j.neucom.2018.07.075
[16] B. Yilmaz, M. Dagdeviren, A combined approach for equipment selection: F-PROMETHEE method and zero-one goal programming. Expert Systems with Applications 38 (9), 11641-11650 (2011). DOI: https://doi.org/10.1016/j.eswa.2011.03.043
[17] Daming Yang, Bingjing Li. The Main Adjustment of New Version China’s “Coal Mine Safety Regulations”. International Journal of Oil, Gas and Coal Engineering 7 (2) (2019). DOI: https://doi.org/10.11648/j.ogce.20190702.14
[18] Liu Shouqiang, Wu Qiang, Zeng Yifan. Analysis of revision points of detailed rules for water prevention and control in coal mines. Coal Engineering 51 (03), 1-4 (2019). DOI: https://doi.org/10.11799/ce201903001
[19] R.U. Bilsel, G. Büyüközkan, D. Ruan, A fuzzy preference‐ranking model for a quality evaluation of hospital web sites. International Journal of Intelligent Systems 21 (11), 1181-1197 (2006). DOI : https://doi.org/10.1002/int.20177
[20] R .R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24 (2): p. 143-161 (1981). DOI: https://doi.org/10.1016/0020-0255(81)90017-7
[21] Yang Qian, Improvement of BP neural network prediction method and its application in long-term settlement prediction of tunnels. Journal of Beijing University of Technology. (01), 92-97 (2011). DOI: CNKI: SUN: BJGD.0.2011-01-016
[22] K. Saito, R. Nakano, Extracting regression rules from neural networks. Neural Networks 15 (PII S0893- 6080(02)00089-810), 1279-1288 (2002). DOI: https://doi.org/10.1016/S0893-6080(02)00089-8
[23] Zhang Dongsheng, Zhang Jixiong, Zhang Xianchen, Fuzzy comprehensive evaluation of mining process conditions of coal seam geological conditions in working face. Journal of Systems Engineering (03), 252-256 (2002). DOI: https://doi.org/10.3969/j.issn.1000-5781.2002.03.011
[24] Zhang Lijun, Zhang Le, Comprehensive Evaluation of Adaptability of Thin Coal Seam Fully Mechanized Mining Technology. Coal Science and Technology (06), 43-45 (2006). DOI: https://doi.org/10.13199/j.cst.2006.06.53.zhanglj.016
[25] C. Wang, S. Tian, Evolving Neural Network Using Genetic Algorithm for Prediction of Longwall Mining Method in Thin Coal Seam Working Face. International Journal of Mining and Mineral Engineering 9 (3), 228-239 (2018). DOI: https://doi.org/10.1504/IJMME.2018.096121
Go to article

Authors and Affiliations

Chen Wang
1 2
ORCID: ORCID
Yu Zhang
1
ORCID: ORCID
Yong Liu
1
ORCID: ORCID
Chengyu Jiang
1
ORCID: ORCID
Mingqing Zhang
1
ORCID: ORCID

  1. Guizhou University, Mining College, Guiyang 550025, China
  2. Chongqing Energy Investment Group Science & Technology co., LTD, Chongqing 400060, China
Download PDF Download RIS Download Bibtex

Abstract

The stability of longwall mining is one of the most important and the most difficult aspects of underground coal mining. The loss of longwall stability can threaten lives, disrupt the continuity of the mining operations, and it requires significant materials and labour costs associated with replacing the damages. In fact, longwall mining stability is affected by many factors combined. Each case of longwall mining has its own unique and complex geological and mining conditions. Therefore, any case study of longwall stability requires an individual analysis. In Poland, longwall mining has been applied in underground coal mining for years. The stability of the longwall working is often examined using an empirical method. A regular longwall mining panel (F3) operation was designed and conducted at the Borynia-Zofiówka-Jastrzębie (BZJ) coal mine. During its advancement, roof failures were observed, causing a stoppage. This paper aims to identify and determine the mechanisms of these failures that occurred in the F3 longwall. A numerical model was performed using the finite difference method - code FLAC2D, representing the exact geological and mining conditions of the F3 longwall working. Major factors that influenced the stability of the F3 longwall were taken into account. Based on the obtained results from numerical analysis and the in-situ observations, the stability of the F3 longwall was discussed and evaluated. Consequently, recommended practical actions regarding roof control were put forward for continued operation in the F3 longwall panel.
Go to article

Authors and Affiliations

Phu Minh Vuong Nguyen
1
ORCID: ORCID
Sylwester Rajwa
1
ORCID: ORCID
Marek Płonka
1
ORCID: ORCID
Waldemar Stachura
2

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, Poland
Download PDF Download RIS Download Bibtex

Abstract

Many studies have investigated the relationship between mindfulness and creativity; however, there are a limited number of studies on the neurological basis of this therapeutic approach using electroencephalogram (EEG). This study aimed at evaluating the effect of mindfulness on improving the creativity of healthy individuals. In this study, 7 healthy subjects (1 male and 6 females) with a mean age of 40.37 years and a standard deviation of 14.52 years received group mindfulness training for 8 weeks. They had no experience of mindfulness training up to that time. Before and after mindfulness training, EEG signal was recorded from all participants in eyes-closed and eyes-open conditions on Fz, C3, C4, and Pz electrodes. After data preprocessing, wavelet coefficients were extracted from each frequency band of EEG signal and evaluated using paired sample t-test and correlation methods. The gamma-band on C3 (t = 2.89, p=0.03) and Pz (t= 2.54, P = 0.04) significantly increased as a result of mindfulness training. Also, significant correlations were found between the anxiety and the gamma band in Pz (r = 0.76, P = 0.04) and Fz (r = 0.75, P = 0.04) channels and between arousal and the gamma band in the Fz channel (r=0.88, P = 0.008). Mindfulness training to promote creativity leads to the increase of gamma bands in the central and parietal regions.
Go to article

Bibliography


Abootalebi, V., Moradi, M. H., & Khalilzadeh, M. A. (2009). A new approach for EEG feature extraction in P300-based lie detection. Computer Methods and Programs in Biomedicine, 94(1), 48–57. https://doi.org/10.1016/j.cmpb.2008.10.001
Ademoglu, A., Micheli-Tzanakou, E., & Istefanopulos, Y. (1997). Analysis of pattern reversal visual evoked potentials (PRVEP’S) by spline wavelets. IEEE Transactions on Biomedical Engineering, 44(9), 881–890. https://doi.org/10.1109/10.623057
Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of medita-tion. Neuroscience Letters, 310(1), 57–60. https://doi.org/10.1016/S0304-3940(01)02094-8
Baer, R. A. (2003). Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical Psychology: Science and Practice, Vol. 10, pp. 125–143. https://doi.org/10.1093/clipsy/bpg015
Beik, M., Taheri, H., Saberi Kakhki, A., & Ghoshuni, M. (2020). Neural Mechanisms of the Contextual Interference Effect and Parameter Similarity on Motor Learning in Older Adults: An EEG Study. Frontiers in Aging Neuroscience, 12(June), 1–14. https://doi.org/10.3389/fnagi.2020.00173
Berkovich-Ohana, A., Glicksohn, J., & Goldstein, A. (2012). Mind-fulness-induced changes in gamma band activity - Implications for the default mode network, self-reference and attention. Clinical Neurophysiology, 123(4), 700–710. https://doi.org/10.1016/j.clinph.2011.07.048
Bidin, L., Pigaiani, L., Casini, M., Seghini, P., & Cavanna, L. Feasibility of a trial with Tibetan Singing Bowls, and suggested benefits in metastatic cancer patients. A pilot study in an Italian Oncology Unit. , 8 European Journal of Integrative Medicine § (2016).
Cahn, R. B., Polich, J., Cahn, B. R., & Polich, J. (2013). Meditation states and traits: EEG, ERP, and neuroimaging studies. TL - 1. Psychology of Consciousness: Theory, Research, and Practice, 1 VN-re(S), 48. https://doi.org/10.1037/2326-5523.1.s.48
Crivelli, D., Fronda, G., Venturella, I., & Balconi, M. (2019). Supporting Mindfulness Practices with Brain-Sensing Devices. Cognitive and Electrophysiological Evidences. Mindfulness, 10(2), 301–311. https://doi.org/10.1007/s12671-018-0975-3
Dehghani, S., Amini, K., Shakibazade, E., Faghihzade, S., & Hashem Zade, M. (2015). Effects Of Two Heart Meditation Exercise On Anxiety Among Patients Undergoing Hemodialysis. Preventive Care in Nursing & Midwifery Journal, 4(2), 56–65.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Demiralp, T., Yordanova, J., & Kolev, V. (1999). Demiralp99b. 145, 1– 17. Retrieved from papers3://publication/uuid/E9AB3BFE-6460-410B-B907-E3A4ECD94526
Ghoshuni, M., Firoozabadi, M., Khalilzadeh, M., & Hashemi Golpaye-Gani, S. M. R. (2013). Variation of Wavelet Entropy in Electro-encephalogram Signal during Neurofeedback Training. Complexity, 18. https://doi.org/10.1002/cplx.21423
Ivanovski, B., & Malhi, G. S. (2007). The psychological and neurophysiological concomitants of mindfulness forms of medita-tion. Acta Neuropsychiatrica, 19(2), 76–91. https://doi.org/10.1111/j.1601-5215.2007.00175.x
Kabat Zinn, J. (1990). Full catastrophe living: Using the wisdom of your body and mind to face stress, pain, and illness/ (Delta trad). Retrieved from https://library.villanova.edu/Find/Record/1428324
Kelly, B. D. (2008). Meditation, mindfulness and mental health. Irish Journal of Psychological Medicine, Vol. 25, pp. 3–4. https://doi.org/10.1017/S0790966700010752
Lomas, T., Ivtzan, I., & Fu, C. H. Y. (2015). A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience and Biobehavioral Reviews, 57, 401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018
Luft, C. D. B., Zioga, I., Banissy, M. J., & Bhattacharya, J. (2019). Spontaneous visual imagery during meditation for creating visual art: An EEG and brain stimulation case study. Frontiers in Psychology, 10(FEB), 1–14. https://doi.org/10.3389/fpsyg.2019.00210
Michael Murphy, Steven Donovan, E. T. (1997). The physical and psychological effects of meditation: A Review of Contemporary Research. The Physical and Psychological Effects of Meditation: A Review of Contemporary Research With a Comprehensive Bibliography, 1931-1996, 1–23. Retrieved from http://noetic.org/ sites/default/files/uploads/files/Meditation_Intro.pdf
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214(August 2019), 116757. https://doi.org/10.1016/j.neuroimage.2020.116757
Pour Afrouz, A. Rajai, A. (2018). The construction and psychometric standardization of the irritability questionnaire is a psychoanalysis of Islamic Azad University (pp. 1–13). pp. 1–13. https://doi.org/EPCONF06_132
Ramalingam, V., Cheng, K. S., Sidhu, M. S., & Foong, L. P. (2019). A pilot study: Neurophysiological study on the effect of chronic ankle pain intervene with video assisted mindful deep breathing. 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018 - Proceedings, 388–393. https://doi.org/10.1109/IECBES.2018.08626731
Ratcliff, C. G., Prinsloo, S., Chaoul, A., Zepeda, S. G., Cannon, R., Spelman, A., … Cohen, L. (2019). A Randomized Controlled Trial of Brief Mindfulness Meditation for Women Undergoing Stereotactic Breast Biopsy. Journal of the American College of Radiology, 16(5), 691–699. https://doi.org/10.1016/j.jacr.2018.09.009
Rokke, P., & Robinson, M. (2006). Book review. Clinical Psychology Review, 26(5), 654–655. https://doi.org/10.1016/j.cpr.2006.03.001
Rosen, D. S., Oh, Y., Erickson, B., Zhang, F. (Zoe), Kim, Y. E., & Kounios, J. (2020). Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. NeuroImage, 213(February), 116632. https://doi.org/10.1016/j.neuroimage.2020.116632
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Ba ar, E. (2001). Wavelet entropy: A new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65–75. https://doi.org/10.1016/S0165-0270(00)00356-3
Rubia, K. (2009). The neurobiology of Meditation and its clinical effectiveness in psychiatric disorders. Biological Psychology, Vol. 82, pp. 1–11. https://doi.org/10.1016/j.biopsycho.2009.04.003
Sairamya, N. J., Premkumar, M. J., George, S. T., & Subathra, M. S. P. (2019). Performance Evaluation of Discrete Wavelet Transform, and Wavelet Packet Decomposition for Automated Focal and Generalized Epileptic Seizure Detection. IETE Journal of Research, 0(0), 1– 21. https://doi.org/10.1080/03772063.2019.1568206
Sibalis, A., Milligan, K., Pun, C., McKeough, T., Schmidt, L. A., & Segalowitz, S. J. (2019). An EEG Investigation of the Attention- Related Impact of Mindfulness Training in Youth With ADHD: Outcomes and Methodological Considerations. Journal of Attention Disorders, 23(7), 733–743. https://doi.org/10.1177/1087054717719535
Stevens, C. E., & Zabelina, D. L. (2019). Creativity comes in waves: an EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154–162. https://doi.org/10.1016/j.cobe-ha.2019.02.003
Taren, A. A., Gianaros, P. J., Greco, C. M., Lindsay, E. K., Fairgrieve, A., Brown, K. W., … Creswell, J. D. (2017). Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial. Psychosomatic Medicine, 79(6), 674–683. https://doi.org/10.1097/PSY.0000000000000466
Tarrant, J., Viczko, J., & Cope, H. (2018). Virtual reality for anxiety reduction demonstrated by quantitative EEG: A pilot study. Frontiers in Psychology, 9(JUL). https://doi.org/10.3389/fpsyg.2018.01280
Thought Technology Ltd. (2016). FlexComp System with/ BioGraph Infiniti Software – T7555M. Thoughttechnology.Com. Retrieved from http://thoughttechnology.com/index.php/flexcomp-system-with-biograph-infiniti-software-t7555m.html
Wong, K. F., Teng, J., Chee, M. W. L., Doshi, K., & Lim, J. (2018). Positive effects of mindfulness-based training on energy maintenance and the EEG correlates of sustained attention in a cohort of nurses. Frontiers in Human Neuroscience,
Go to article

Authors and Affiliations

Mahdieh Naderan
1
Majid Ghoshuni
1
ORCID: ORCID
Elham Pour Afrouz
2

  1. Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  2. Institute for Cognitive Science Studies, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to analyse relations between power in professional work and in close sexual relationships. Power in professional work was analysed with respect to the managerial position, the number of subordinates and salary. Power in close sexual relationships was determined on the basis of a sense of reinforcement of power as a sexual motivation, a propensity for sexual domination, the sense of power in relations with a partner in a close relationship, sexual assertiveness, realization of one’s own sexual phantasies and inclination to initiate sexual activity. The research was carried out on a group of 205 participants in which 100 of respondents occupied managerial positions at work and 105 were subordinates. The following tools were used: the Sense of Power Scale (Anderson, John, & Keltner, 2012), the Multidimensional Sexuality Questionnaire (Snell, Fisher, & Walters, 1993), the AMORE scale (Hill & Preston, 1996), the Need for Power and Influence Questionnaire (Bennett, 1988) and a data sheet. The results showed that power in the workplace was correlated a more frequent initiation of sexual activity, greater assertiveness in sexual matters, more frequent realisation of one’s own phantasies and an increased propensity for sexual domination.

Go to article

Authors and Affiliations

Eugenia Mandal
Dagna Joanna Kocur
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The primary objective of this paper is the custom design of an effective, yet relatively easyto- implement, predictive control algorithm to maintain normoglycemia in patients with type 1 diabetes. The proposed patient-tailorable empirical model featuring the separated feedback dynamics to model the effect of insulin administration and carbohydrate intake was proven to be suitable for the synthesis of a high-performance predictive control algorithm for artificial pancreas.Within the introduced linear model predictive control law, the constraints were applied to the manipulated variable in order to reflect the technical limitations of insulin pumps and the typical nonnegative nature of the insulin administration. Similarly, inequalities constraints for the controlled variable were also assumed while anticipating suppression of hypoglycemia states during the automated insulin treatment. However, the problem of control infeasibility has emerged, especially if one uses too tight constraints of the manipulated and the controlled variable concurrently. To this end, exploiting the Farkas lemma, it was possible to formulate the helper linear programming problem based on the solution of which this infeasibility could be identified and the optimality of the control could be restored by adapting the constraints. This adaptation of constraints is asymmetrical, thus one can force to fully avoid hypoglycemia at the expense of mild hyperglycemia. Finally, a series of comprehensive in-silico experiments were carried out to validate the presented control algorithm and the proposed improvements. These simulations also addressed the control robustness in terms of the intersubject variability and the meal announcements uncertainty.
Go to article

Authors and Affiliations

Martin Dodek
1
Eva Miklovicová
1

  1. Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The nonlinear interaction of magnetoacoustic waves in a plasma is analytically studied. A plasma is an open system. It is affected by the straight constant equilibrium magnetic flux density forming constant angle with the wave vector which varies from 0 till π. The nonlinear instantaneous equation which describes excitation of secondary wave modes in the field of intense magnetoacoustic perturbations is derived by use of projecting. There is a diversity of nonlinear interactions of waves in view of variety of wave modes, which may be slow or fast and may propagate in different directions. The excitation is analysed in the physically meaningful cases, that is: harmonic and impulsive exciter, oppositely or accordingly directed dominant and secondary wave modes.
Go to article

Authors and Affiliations

Anna Perelomova
1

  1. Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

In a previous study, the endophytic Bacillus velezensis NC318 was isolated from the rhizosphere of date palm and showed strong antifungal activity against the soil-borne plant pathogenic fungus, Sclerotium rolfsii Sacc, the causal agent of Southern blight. The potential of the Bacillus genus in the inhibition of plant pathogens is mainly due to the production of certain bioactive compounds. In the present study, secondary metabolites extracted from the cell-free supernatant of strain NC318 showed strong antifungal activity on the mycelial growth and germination of S. rolfsii sclerotia in vitro. With 50 μl of bioactive compounds crude extracts, the mycelial growth inhibition rate was 97% and any germination of sclerotia was reported. Chemical analysis of the secondary metabolite crude extracts performed by high performance liquid chromatography coupled with mass spectrometry (HPLC/MS), revealed that the secreted bioactive compounds belonged to the family of lipopeptides (iturin, fengycin, surfactin), polyketides (bacillaene, macrolactin, difficidin and bacilysin) and siderophores (bacillibactin). These results provide a better understanding of the biocontrol mechanism of the bacteria strain B. velezensis NC318 against the soil fungal pathogens, especially S. rolfsii root rot.
Go to article

Authors and Affiliations

Michelle Gaëlle Siméone Bidima
1
Noureddine Chtaina
1
Brahim Ezzahiri
1
Mohammed El Guilli
2
Ilham Barakat
1
ORCID: ORCID
Taha El Kamli
3

  1. Plant Protection Unit, Hassan II Agronomic and Veterinary Institute, Rabat, Morocco
  2. Plant Protection Unit, National Institute of Agronomic Research, Rabat, Morocco
  3. Anti-Doping Control Laboratory, Hassan II Agronomic and Veterinary Institute, Kenitra, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.

Go to article

Authors and Affiliations

Ahmed M. El-Bakry
Hanan F. Youssef
Nahed F. Abdel-Aziz
Elham A. Sammour
Download PDF Download RIS Download Bibtex

Abstract

Accurate information on Induction Motor (IM) speed is essential for robust operation of vector controlled IM drives. Simultaneous estimation of speed provides redundancy in motor drives and enables their operation in case of a speed sensor failure. Furthermore, speed estimation can replace its direct measurement for low-cost IM drives or drives operated in difficult environmental conditions. During torque transients when slip frequency is not controlled within the set range of values, the rotor electromagnetic time constant varies due to the rotor deep-bar effect. The model-based schemes for IM speed estimation are inherently more or less sensitive to variability of IM electromagnetic parameters. This paper presents the study on robustness improvement of the Model Reference Adaptive System (MRAS) based speed estimator to variability of IM electromagnetic parameters resulting from the rotor deep-bar effect. The proposed modification of the MRAS-based speed estimator builds on the use of the rotor flux voltage-current model as the adjustable model. The verification of the analyzed configurations of the MRAS-based speed estimator was performed in the slip frequency range corresponding to the IM load adjustment range up to 1.30 of the stator rated current. This was done for a rigorous and reliable assessment of estimators’ robustness to rotor electromagnetic parameter variability resulting from the rotor deep-bar effect. The theoretical reasoning is supported by the results of experimental tests which confirm the improved operation accuracy and reliability of the proposed speed estimator configuration under the considered working conditions in comparison to the classical MRAS-based speed estimator.

Go to article

Authors and Affiliations

Jarosław Rolek
Grzegorz Utrata
Andrzej Kaplon
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on selected thermal, mechanical properties, as well as the microscopic structure of filaments and details made on a 3D printer in FDM technology. The materials used in the study were PETG (polyethylene terephthalate doped with glycol) and PLA (polylactide) doped with copper. As part of the study, Differential Scanning Calorimetry (DSC) was performed in order to determine the temperatures of phase transformations and changes in melting enthalpy values of filaments before the printing process and also elements made of them. The second part of the research was electrocorrosive ageing process of printouts, carried out in the Simulated Body Fluid solution in a device generating 0.3 A direct current, voltage with value 4.3 V for the entire duration of the test, which was 720 h. After this process DSC test was conducted again. The next stage of the research was Dynamic Mechanical Analysis (DMA) of printouts before and after electrocorrosive ageing process. This test was carried out to characterize the dynamic-mechanical properties as a function of frequency, temperature and time. Additionally, microscopic analyses of the surfaces of the tested printouts were performed in order to assess the changes after electrolysis.
Go to article

Authors and Affiliations

J. Redutko
1
ORCID: ORCID
A. Kalwik
1
ORCID: ORCID
A. Szarek
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article aims at understanding how scientific writing was evolving from the medieval to the Early Modern times through the study of two copies of the same text belonging to both periods: the Agnus Castus Herbal. This text offers the possibility of studying the fluidity of this specific type of discourse in a time of a profound technological innovation, reflecting the way the texts were not only produced but also perceived. For those making decisions on how to present this old material to new readers and through a new medium, the influence of the new humanist views and the powerful middle-class may have influenced the final resolutions. The Agnus Castus Herbal was a very popular tract in the Middle Ages, a fundamental part of medical treatments at the time, and was probably still of great interest in the early sixteenth century. Its Early Modern English counterpart – published in 1525 – is the first Herbal printed in England.
Go to article

Authors and Affiliations

María José Esteve-Ramos
1
ORCID: ORCID

  1. Universitat Jaume I, Gremi
Download PDF Download RIS Download Bibtex

Abstract

Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration signals sensored, collected and analyzed can provide information about the state of an induction motor. Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole rotating machinery, or in particular, one of its components. The main objective of this paper is to propose a method for automatic monitoring of bearing components condition of an induction motor. The proposed method is based on two approaches with one based on signal processing using the Hilbert spectral envelope and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows the extraction of frequency characteristics that are considered as new features entering the classifier. The frequencies chosen as features are determined from a proportional variation of their amplitudes with the variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection while automatically locating the faulty component with a classification rate of 99.94%. The results obtained with the proposed method have been validated experimentally using a test rig.
Go to article

Authors and Affiliations

Bilal Djamal Eddine Cherif
1
Sara Seninete
2
Mabrouk Defdaf
1

  1. Department of Electrical Engineering, Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Previous morphological studies of mammalian pancreatic islets have been performed mainly in domestic and laboratory animals. Therefore, the present immunohistochemical investigation was conducted in a wild species, the European bison, using antibodies against glucagon-like peptide-1 (GLP1), glucagon, insulin and somatostatin. Morphological analyses revealed that the mean area of the endocrine pancreas constituted 2.1±0.1% of the whole area of the pancreas, while the mean area of a single pancreatic islet was 13301.5±686.5 µm2. Glucagon-immunoreac- tive cells accounted for 22.4±1.1% and occupied 19.4±0.4% of the average islet area. As many as 14.3±1.4% of pancreatic islet cells were shown to express GLP1, which constituted 12.6±0.8% of the mean area of the islet. Insulin expression was confirmed in 67.6±0.7% of pancreatic islet cells, which represented 62.3±4.9% of the mean total area of the pancreatic islet. As many as 8.5±1.3% of cells stained for somatostatin. The somatostatin-immunoreactive cell area was 4.9±0.3% of the mean pancreatic islet area. In summary, we have determined in detail for the first time the morphometry and islet composition of the European bison pancreas. The distri- bution patterns of immunoreactivities to the substances studied in the European bison show many similarities to those described in other ruminant species.

Go to article

Authors and Affiliations

S. Mozel
S. Szymańczyk
M. Krzysiak
I. Puzio
A. Zacharko-Siembida
M.B. Arciszewski
Download PDF Download RIS Download Bibtex

Abstract

Diarrhea caused by parasitic agents is common in neonatal calves and leads to significant economic losses in cattle farms worldwide. Cryptosporidium spp. is one of the most frequently detected parasitic agents causing diarrhea in neonatal calves. The aim of this study was to investigate the presence of Cryptosporidium spp. on a dairy farm which a has major diarrhea problem. Samples were collected from calves, cows, drinking bowls, and two different artesian water sources, as well as from the environment. All fecal samples were investigated using Kinyoun acid-fast stained slides and real-time PCR targeting the Cryptosporidium spp. COWP gene. In addition, species identification was performed by nested PCR targeting the Cryptosporidium spp. COWP gene and sequencing. Cryptosporidium spp. was detected in 11 calves (30.55%; 11/36) by real-time PCR and the cows were negative. Among real-time PCR positive samples, only five were also found positive by microscopy. Moreover, Cryptosporidium spp. was found in one of the two artesian water sources and five environmental samples by real-time PCR. Among these positive samples, eight were sequenced. According to the RFLP pattern, BLAST and, phylogenetic analyses, all sequenced samples were Cryptosporidium parvum. These findings show the importance of C. parvum as a cause of calf diarrhea on dairy farms.
Go to article

Bibliography


Arslan MÖ, Sarı B, Kara M, Taşçı GT, İtik Ekinci A, Gündüz N (2012) Research on the Prevalence of Eimeria and Cryptosporidium Species in Cows in Periparturient Period in Kars Region. Kafkas Univ Vet Fak Derg 18: 65-70.
Ayinmode AB, Fagbemi BO (2010) Prevalence of Crypto-sporidium infection in cattle from south western Nigeria. Vet Arh 80: 723-731.
Burgu A (1984) Preliminary studies on the occurrence of Cryptosporidia in calves in Turkey. Ankara Üniv Vet Fak Derg 3: 573-585. Cole DJ (1997) Detection of Cryptosporidium parvum using the Kinyoun acid-fast stain. Proc Annu Conv AAEP 43: 409-410.
Doungmala P, Phuektes P, Taweenan W, Sangmaneedet S, Japa O (2019) Prevalence and species identification of Cryptosporidium spp. In the newborn dairy calves from Muang District, Khon Kaen Province, Thailand. Vet World 12: 1454-1459.
Döşkaya M, Caner A, Deǧirmenci A, Wengenack NL, Yolasığmaz A, Turgay T, Özensoy Töz S, Gürüz Y (2011) Degree and frequency of inhibition in a routine realtime PCR detecting Pneumocystis jirovecii for the diagnosis of Pneumocystis pneumonia in Turkey. J Med Microbiol 60: 937-944.
Elmi T, Gholami S, Rahimi-Esboei B, Garaili Z, Najm M, Tabatabaie F (2017) Comparison of sensitivity of sucrose gradient, Wet mount and formalin-ether in detecting protozoan Giardia lamblia in stool specimens of BALB/c mice. J Pure Appl Microbiol 11: 105-109.
Fayer R, Santín M, Macarisin D (2010) Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol 172: 23-32.
Guy RA, Payment P, Krull UJ, Horgen PA (2003) R Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69(9): 5178-85.
Hamnes IS, Gjerde B, Robertson L (2006) Prevalence of Giardia and Cryptosporidium in dairy calves in three areas of Norway. Vet Parasitol 140: 204-216.
Hatam-Nahavandi K, Ahmadpour E, Carmena D, Spotin A, Bangoura B, Xiao L (2019) Cryptosporidium infections in terrestrial ungulates with focus on livestock: A syste- matic review and meta-analysis. Parasit Vectors 12: 1-23.
Ibrahim HS, Shehab AY, Allam AF, Mohamed MA, Farag HF, Tolba NM (2020) Detection and Molecular Identification of Cryptosporidium Species Among Children with Malignancies. Acta Parasitol. 66 (2): 377-383.
Karakavuk M, Aldemir D, Mercier A, Atalay E, Can H, Murat JB, Döndüren Ö, Can Ş, Özdemir HG, Değirmenci Döşkaya A, Pektaş B, Darde ML, Gürüz AG, Döşkaya M (2018) Prevalence of toxoplasmosis and genetic characterization of Toxoplasma gondii strains isolated in wild birds of prey and their relation with previously isolated strains from Turkey. PLoS One 13: 1-17.
Karakavuk M, Can H, Selim N, Yeşilsiraz B, Atlı E, Atalay E, Demir F, Gül A, Özdemir HG, Alan N, Yalçın M, Özkurt O, Aras M, Çelik T, Can Ş, Değirmenci Döşkaya A, Gürüz AG, Döşkaya M (2021) Investigation of the role of stray cats for transmission of toxoplasmosis to humans and animals living in Izmir, Turkey. J Infect Dev Ctries 15: 155-162.
Kehl KS, Cicirello H, Havens PL (1995) Comparison of four different methods for detection of Cryptosporidium species. J Clin Microbiol 33: 416-418.
Morgan UM, Pallant L, Dwyer BW, Rich G, Thompson RC (1998) Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: Clinical trial. J Clin Microbiol 36: 995-998.
Muthusamy D, Rao SS, Ramani S, Monica B, Banerjee I, Abraham OC, Mathai DC, Primrose B, Muliyil J, Wanke CA, Ward HD, Kang G (2006) Multilocus genotyping of Cryptosporidium sp. isolates from human immunodeficiency virus-infected individuals in South India. J Clin Microbiol 44: 632-634.
Naciri M, Lefay M, Mancassola R, Poirier P, Chermette R (1999) Role of Cryptosporidium parvum as a pathogen in neonatal diarrhoea com-plex in suckling and dairy calves in France. Vet Parasitol 85: 245-257.
Ng J, Yang R, McCarthy S, Gordon C, Hijjawi N, Ryan U (2011) Molecular characterization of Cryptosporidium and Giardia in pre-weaned calves in Western Australia and New South Wales. Vet Parasitol 176: 145-150.
O’Handley RM (2007) Cryptosporidium parvum infection in cattle: are current perceptions accurate? Trends Parasitol 23: 477-480.
Paul S, Chandra D, Ray DD, Tewari AK, Rao JR, Banerjee PS, Baidya S, Raina OK (2008) Prevalence and molecular characterization of bovine Cryptosporidium isolates in India. Vet Parasitol 153: 143-146.
Pedraza-Díaz S, Amar C, Nichols GL, McLauchlin J (2001) Nested polymerase chain reaction for amplification of the Cryptosporidium oo-cyst wall protein gene. Emerg Infect Dis 7: 49-56.
Pilarczyk B, Kołodziejczyk L, Zaja̧czkowska K, Kuźna Grygıel W, Balıcka-Ramısz A, Tomza-Marcınıak A, Pılarczyk R(2009) Prevalence of Eimeria and Crypto- sporidium sp. protozoa in polish cows and in cows imported from the Netherlands as in-calf heifers. Bull Vet Inst Pulawy 53: 637-640.
Ralston BJ, McAllister TA, Olson ME (2003) Prevalence and infection pattern of naturally acquired giardiasis and cryptosporidiosis in range beef calves and their dams. Vet Parasitol 114: 113-122.
Robertson L, Gjerde B, Hansen EF, Stachurska-Hagen T (2009) A water contamination incident in Oslo, Norway during October 2007; a basis for discussion of boil-water notices and the potential for post-treatment contamination of drinking water supplies. J Water Health 7: 55-56.
Rzezutka A, Kaupke A (2013) Occurrence and molecular identification of Cryptosporidium species isolated from cattle in Poland. Vet Parasi-tol 196: 301-306.
Santín M, Trout JM, Xiao L, Zhou L, Greiner E, Fayer R (2004) Prevalence and age-related variation of Cryptosporidium species and geno-types in dairy calves. Vet Parasitol 122: 103-117.
Şahal M, Terzi OS, Ceylan E, Kara E (2018) Calf Diarrhea and Prevention Methods. Lalahan Hay. Araşt. Enst. Derg 58: 41-49.
Sevinc F, Irmak K, Sevinc M (2003) The prevalence of Cryptosporidium parvum infection in the diarrhoiec and non- diarrhoeic calves. Rev Med Vet 154: 357-361.
Silverlås C (2010) Cryptosporidium infection in dairy cattle. Doctoral Thesis. Swedish University of Agricultural Sciences, Uppsala.
Şimsek AT, İnci A, Yıldırım A, Çiloğlu A, Bişkin Z, Düzlü Ö (2012) Detection of Cryptosporidiosis in Diarrhoeic Neonatal Calves in Nevşehir District by Real Time PCR and Nested PCR Techniques. Erciyes Üni Vet Fak Derg 9: 79-87.
Singh BB, Sharma R, Kumar H, Banga HS, Signh Aulakh R, Gill JPS, Sharma JK (2006) Prevalence of Cryptospori- dium parvum infection in Punjab (India) and its association with diarrhea in neonatal dairy calves. Vet Parasitol 140: 162-165.
Spano F, Putignani L, McLauchlin J, Casemore DP, Crisanti A (1997) PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol Lett 150: 209-217.
Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Van Lieshout L, Petri Jr WA, Haque R, Houpt ER (2011) High throughput multiplex PCR and probe-based detection with luminex beads for seven intestinal parasites. Am J Trop Med Hyg 84: 332-337.
Thompson HP, Dooley JSG, Kenny J, McCoy M, Lowery JC, Moore JE, Xiao L (2007) Genotypes and subtypes of Cryptosporidium spp. in neonatal calves in Northern Ireland. Parasitol Res 100: 619-624.
Thompson RCA (2004) The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Vet Parasitol 126: 15-35.
Torsein M, Lindberg A, Sandgren CH, Waller KP, Törnquist M, Svensson C (2011) Risk factors for calf mortality in large Swedish dairy herds. Prev Vet Med 99: 136-147.
Trotz-Williams LA, Jarvie BD, Martin SW, Leslie KE, Peregrine SA (2005) Prevalence of Cryptosporidium parvum infection in southwestern Ontario and its association with diarrhea in neonatal dairy calves. Can Vet J 46: 349-351.
Turgay N, Unver-Yolasiǧmaz A, Oyur T, Bardak-Özcem S, Töz S (2012) Monthly distribution of intestinal parasites detected in a part of western Turkey between May 2009-April 2010-results of acid fast and modified trichrome staining methods. Turkiye Parazitol Derg 36: 71-74.
Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol 52: 309-323.
Go to article

Authors and Affiliations

M. Karakavuk
1 2
H. Can
3
M. Döşkaya
1
T. Karakavuk
1
S. Erkunt-Alak
3
A.E. Köseoğlu
3
A. Gül
4
C. Ün
3
Y. Gürüz
1
A. Değirmenci-Döşkaya
1

  1. Ege University Faculty of Medicine, Department of Parasitology, Bornova, İzmir, Turkey
  2. Ege University, Ödemiş Vocational School, Veterinary technology programs, Ödemiş, Izmir, Turkey
  3. Ege University Faculty of Science, Department of Biology, Molecular Biology Section, Bornova, İzmir, Turkey
  4. Ege University Faculty of Engineering, Department of Bioengineering, Bornova, İzmir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The performance of free-space optical (FSO) communications that using an optical amplifier (OA) in the scheme of an amplify-received (AR)-relaying has a major drawback in the detection of input signal quality under the effects of turbulence. As an OA is based on a fiber-detection (FD) method to receive and delivers a signal at the amplification process stage, there is an opportunity to implement an optical spatial filter (OSF) to improve the quality of an input signal. In this paper, as the continuation of previous work on the direct-detection, the OSF is applied on the AR-relaying. The novelty proposed in this work is the improvement of FD method where the OSF is designed as the integration of cone reflector, pinhole and multi-mode fiber with an OA. The OSF produces an optical signal, the input of the OA, which minimizes the effects of turbulence, background noise and signal fluctuation. Thus, OA in AR-relaying produces signal output with high power and rise up below threshold level. Additionally, an OSF with a lower pinhole diameter produces the best quality of the signal spectral to be delivered into an EDFA. Through this implementation, the performance of optical relaying on FSO can be significantly improved.
Go to article

Authors and Affiliations

Ucuk Darusalam
1 2
Purnomo Sidi Priambodo
3
Fitri Yuli Zulkifli
3
Eko Tjipto Rahardjo
3

  1. Department of Informatics, Faculty of Information and Communications Technology, Universitas Nasional, Jakarta, Indonesia
  2. Universitas Siber Asia, Jakarta, Indonesia
  3. Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The Parliament of the Republic of Poland was one of five European parliaments which – in view of the full-scale aggression by Russia against Ukraine which commenced on 24 February 2022 – adopted resolutions declaring the Russian Federation as a state associated with terrorism. The Polish acts are consistent with resolutions adopted on the same subject by the Parliamentary Assembly of the Council of Europe (PACE) and the European Parliament of the European Union (EP).
Although not legally binding, the adoption of these resolutions have a large symbolic dimension and may have a negative impact on the perception of and possibilities of Russian participation in the international arena. From the Polish perspective, the national decisions linking Russia with terrorist activities will influence decisions taken within the sanctions regime, as well as with regard to the legal qualification of certain acts under Polish criminal law in the course of proceedings conducted by Polish prosecution authorities in relation to the war. Finally, as long as the war continues and the assessment of Russia as a terrorist state remains in place, it will not be possible to restore and maintain ordinary diplomatic, economic and other relations with that state.
Go to article

Authors and Affiliations

Aleksandra Mężykowska
1
ORCID: ORCID

  1. Department of Constitutional Law and European Research, Institute ofLegal Sciences, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

In drill and blast tunneling method (D&B), non-electric detonators are the most commonly used initiation system. The constant development of excavation technology provides advanced tools for achieving better results of excavation. The research presented in this paper was focused on the attempt to evaluate the influence of electronic detonators, which nowadays are unconventional in tunnelling engineering, on the quality of the excavated tunnel contour. Based on the data form Bjørnegård tunnel in Sandvika, where electronic detonators were tested in five blasting rounds, detailed analysis of drilling was performed. The analysis was made based on the data from laser scanning of the tunnel. 103 profile scans were used for the analysis: 68 from non-electric detonators and 35 from electronic detonators rounds. The results analyzed in terms of contour quality showed that comparing to the results from rounds blasted with non-electric detonators, there was not significant improvement of the contour quality in rounds with electronic detonators.
Go to article

Bibliography


[1] D. Chapman, N. Metje, A. Stark, “Introduction to tunnel construction” Second edition. CRC Press. Taylor&Francis Group, LLC, 2018. https://doi.org/10.1201/9781315120164
[2] S. Zare, A. Bruland, J. Rostami, “Evaluating D&B and TBM tunnelling using NTNU prediction models”, Tunnelling and Underground Space Technology 59: pp. 55–64, 2016. https://doi.org/10.1016/j.tust.2016.06.012
[3] Norwegian Tunnelling Technology, Publication no. 23: pp. 13–16, pp. 99–113. Norwegian Tunnelling Society, Oslo, 2014.
[4] B. Maidl, M. Thewes, U. Maidl, “The handbook of tunnel engineering. Drill and blast tunneling” (chapter 5), WILEY‐VCH Verlag GmbH, 2013. https://doi.org/10.1002/9783433603499.ch5
[5] D. Zou, “Contour Blasting for Underground Excavation”. In: Theory and Technology of Rock Excavation for Civil Engineering. Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-1989-0_17
[6] C. Jimeno, E. L. Jimeno, F. J .A. Carcedo, T. V. Ramiro, “Drilling and Blasting of Rocks”, Taylor & Francis Group, 2017. https://doi.org/10.1201/9781315141435
[7] Y. Kim, A. Bruland, “Analysis and Evaluation of Tunnel Contour Quality Index”, Automation in Construction 99: pp. 223–237, 2019. https://doi.org/10.1016/j.autcon.2018.12.008
[8] A. Skłodowska, M. Mitew-Czajewska, “Contour quality in drill and blast method in Norwegian Tunnelling Method”, Inżynieria i Budownictwo 3/2017: pp. 159–161, 2017 (in Polish).
[9] H. L. Arora, D. V. Singh, “Overbreak in underground excavations-some key insights”, 12th International Symposium on Rock Fragmentation by Blasting, Luleå Sweden, 11–13 June 2018.
[10] J. A. Ibarra, N. H. Maerz, J. A. Franklin, “Overbreak and underbreak in underground openings Part 2: causes and implications”, Geotechnical and Geological Engineering, Vol. 14, No. 3: pp. 325–340, 1996. https://doi.org/10.1007/BF00421947
[11] E. Costamagna, C. Oggeri, P. Segarra, R. Castedo, J. Navarro, “Assessment of contour profile quality in D&B tunneling”, Tunnelling and Underground Space Technology 75: pp. 67–80, 2018. https://doi.org/10.1016/j.tust.2018.02.007
[12] G. M. Foderà, A. Voza, G. Barovero, F. Tinti, D. Boldini, “Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel – BBT”, Tunnelling and Underground Space Technology 105: pp. 103–475, 2020. https://doi.org/10.1016/j.tust.2020.103475
[13] H. K. Verma, N. K. Samadhiya, M. Singh, R. K. Goel, P. K. Singh, “Blast induced rock mass damage around tunnels”, Tunnelling and Underground Space Technology 71: pp. 149–158. 2018. https://doi.org/10.1016/j.tust.2017.08.019
[14] B. Zou, Z. Xu, J. Wang, Z. Luo, L. Hu, "Numerical investigation on influential factors for quality of smooth blasting in rock tunnels", Advances in Civil Engineering 2020: 9854313, 2020. https://doi.org/10.1155/2020/9854313
[15] P. Montagneux, P. Buffard Vercelli, “A new approach for qualifying blasting works in underground”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation – Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
[16] A. Mottahedi, F. Sereshki, M. Ataei, “Development of overbreak prediction models in drill and blast tunneling using soft computing methods”, Engineering with Computers 34: pp. 45–58, 2018. https://doi.org/10.1007/s00366-017-0520-3
[17] A. H. Salum, V. M. S. R. Murthy, “Optimizing blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes”, Tunnelling and Underground Space Technology 85: pp. 307–318, 2019. https://doi.org/10.1016/j.tust.2018.11.029
[18] E. Salas Garcia, A. Diaz Butron, “Tunnels: Blasting Optimization for advance 100%, with overbreak and underbreak lower than 5%. Work Cycle Quality, direct improvement of the efficiency and profitability of an underground work”, DNA-TEC-N-013-B-TUNNEL & MINING, 2019.
[19] A. F. McKown, “Perimeter controlled blasting for underground excavations in fractured and weathered rocks”, Environmental and Engineering Geoscience, xxiii (4): pp. 461–478, 1986. https://doi.org/10.2113/gseegeosci.xxiii.4.461
[20] N. Innaurato, R. Mancini, M. Cardu, “On the influence of rock mass quality on the quality of blasting work in tunnel driving”, Tunnelling and Underground Space Technology 13 (1): pp. 81–89, 1998. https://doi.org/10.1016/S0886-7798(98)00027-3
[21] S. Zare, “Prediction Model and Simulation Tool for Time and Cost of Drill and Blast Tunnelling”, Ph.D Thesis, Norwegian University of Science and Technology, Trondheim, 2007.
[22] K. Dey, V. M. S. R. Murthy, “Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class”, Tunnelling and Underground Space Technology 28: pp. 49–56, 2012. https://doi.org/10.1016/j.tust.2011.09.004
[23] H. Mohammadi, A. Azad, “Applying rock engineering systems approach for prediction of overbreak produced in tunnels driven in hard rock”, Geotechnical and Geological Engineering 38: pp. 2447–2463, 2020. https://doi.org/10.1007/s10706-019-01161-z
[24] H. Mohammadi, B. Barati, A. Y. Chamzini, “Prediction of blast-induced overbreak based on geo-mechanical parameters, blasting factors and the area of tunnel face”, Geotechnical and Geological Engineering 36: pp. 425–437, 2018. https://doi.org/10.1007/s10706-017-0336-3
[25] J. van Eldert, “Measuring of over-break and the excavation damage zone in conventional tunneling”, Proceedings of the World Tunnel Congress 2017: Surface challenges – Underground solutions [Internet], 2017.
[26] H. Jang, Y. Kawamura, U. Shinji, “An empirical approach of overbreak resistance factor for tunnel blasting”, Tunnelling and Underground Space Technology 92: 103060, 2019. https://doi.org/10.1016/j.tust.2019.103060
[27] A. Mottahedi, F. Sereshki, M. Ataei, “Overbreak prediction in underground excavations using hybrid ANFIS-PSO model”, Tunnelling and Underground Space Technology 80: pp. 1–9, 2018. https://doi.org/10.1016/j.tust.2018.05.023
[28] W. Zhang, J. Tang, D-S. Zhang, L. Zhang, Y. Sun, W-S. Zhang, “Experimental study on the joint application of innovative techniques for the improved drivage of roadways at depths over 1km: a case study”, Archives of Mining Sciences 65 (2020), 1: pp. 159–178, 2020. https://doi.org/10.24425/ams.2020.132713
[29] J. Pengfei, X. Zhang, X. Li, B. Jiang, B. Liu, H. Zhang, “Optimization analysis of construction scheme for large-span highway tunnel under complex conditions”, Archives of Civil Engineering 64(4): pp. 55–68, 2018. https://doi.org/10.2478/ace-2018-0044
[30] Q. Gao, W. Lu, Z. Leng, Z. Yang, Y. Zhang, H. Hu, "Effect of initiation location within blasthole on blast vibration field and its mechanism", Shock and Vibration 2019: 5386014, 2019. https://doi.org/10.1155/2019/5386014
[31] R. König, “Improvement of tunnel profile by means of electronic detonators”, Modern Trends in Tunnelling and Blast Design: pp. 123–130, 2000.
[32] H. P. Rossmanith, "The mechanics and physics of electronic blasting", Proceedings of the 29th ISEE Annual Conference on Explosives and Blasting Technique, Nashville, Tennessee, 2-5 February, vol. 1: pp. 83–101, 2003.
[33] H. P. Grobler, “Using Electronic Detonators to Improve All-Round Blasting Performances”, Fragblast, 7:1, pp. 1–12, 2003, https://doi.org/10.1076/frag.7.1.1.14061
[34] Y. Bleuzen, F. Monath, M. Quaresma, M. Joao, “Tunnel blasting in a sensitive environment using electronic detonators”, The Journal of Explosives Engineering, sept./oct.: 6–14, 2005.
[35] A. Fauske, “La construccion de tuneles urbanos en Noruega”, Rocas y Minerales, July: pp. 62–74, 1998.
[36] M. Stratmann, “Moderne Bohr-und Sprengverfahren beim Vortrieb des Mitholztunnel”, Nobel Hefte, 1/2: pp. 31–39, 1996.
[37] M. Yamamoto, T. Ichijo, Y. Tanaka, “Smooth blasting with the electronic delay detonator”, 21 st ISEE Int. Conf. on Explosives & Blasting Technique, International Society of Explosives Engineers: pp. 144–156, 1995. https://doi.org/10.1080/13855149909408030
[38] H. Fu, L. N. Y. Wong, Y. Zhao, Z. Shen, C. Zhang, Y. Li, “Comparison of Excavation Damage Zones Resulting from Blasting with Nonel Detonators and Blasting with Electronic Detonators”, Rock Mech Rock Eng 47: pp. 809–816, 2014. https://doi.org/10.1007/s00603-013-0419-2
[39] M. Cardu, A. Giraudi, P. Oreste, “A review of the benefits of electronic detonators”, REM: Revista Escola de Minas 66(3): pp. 375–382, 2013. https://doi.org/10.1590/S0370-44672013000300016
[40] Y. Kim, “Tunnel Contour Quality Index in a drill and blast tunnel” (Ph.D.). Norwegian University of Science and Technology, 2009.
[41] Manual 021. Road tunnels, Norwegian Public Roads Administration, NPRA Printing Center, Norway 2004. ISBN 82-7207-540-7
[42] V. Isheyskiy, J. A. Sanchidrián, “Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises”, Minerals 10: p. 925, 2020. https://doi.org/10.3390/min10100925
[43] J. Navarro, J.A. Sanchidrián, P. Segarra, R. Castedo, E. Costamagna, L.M. López, “Detection of potential overbreak zones in tunnel blasting from MWD data”, Tunnelling and Underground Space Technology 82: pp. 504–516, 2018. https://doi.org/10.1016/j.tust.2018.08.060
[44] Statens vegvesen. Håndbok R761 Prosesskode 1: standard beskrivelsestekster for vegkontrakter: hovedprosess 1-7 (1st ed.), Oslo, 2015.
[45] Digitalisation in Norwegian tunneling. Publication no 28, Nowregian Tunnelling Society, Oslo, Norway, 2019. ISBN 978-82-92641-45-3
[46] Q. Jiang, S. Zhong, P-Z. Pan, Y. Shi, H. Guo, Y. Kou, “Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No. 2 Mine”, Tunnelling and Underground Space Technology 97: pp. 103–237, 2020. https://doi.org/10.1016/j.tust.2019.103237
[47] H. Sun, Z. Xu, L. Yao, R. Zhong, L. Du, H. Wu, “Tunnel monitoring and measuring system using mobile laser scanning: design and deployment”, Remote Sensing 12(4): p. 730, 2020. https://doi.org/10.3390/rs12040730
[48] N. H. Maerz, J. A. Ibarra, J. A. Franklin, “Overbreak and underbreak in underground openings part 1: measurement using the light sectioning method and digital image processing”, Geotechnical & Geological Engineering 14: pp. 307–323, 1996. https://doi.org/10.1007/BF00421946
[49] S. Amvrazis, K. Bergmeister, R. W. Glatzl, “Optimizing the excavation geometry using digital mapping”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation – Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
[50] K. Voit, S. Amvrazis, T. Cordes, K. Bergmeister, “Drill and blast excavation forecasting using 3D laser scanning”, Geomechanic und Tunnelbau 10(3): pp. 298–316, 2017. https://doi.org/10.1002/geot.201600057
Go to article

Authors and Affiliations

Anna Monika Skłodowska
1 2
ORCID: ORCID
Monika Mitew-Czajewska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Now at: Instituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Borgo Grotta Gigante 42/C - 34010 - Sgonico, Italy & University of Trieste, Piazzale Europa 1, Trieste, Italy
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this analysis is to consider a mutual interference between aircraft motion and surrounding flow field. Euler flow model for inviscid, compressible gas and aircraft flight dynamics model was used to analyse quick dynamic manoeuvres. For such manoeuvres, aerodynamic hysteresis has a great influence on aircraft dynamics, which cannot be simulated with the assumption of quasi-steady aerodynamics. On the other hand, the aircraft motion as a rigid body strongly influences the flow field around itself. To account for this mutual interference, the Euler flow equations were used to obtain aerodynamic forces and moments acting on a simplified aircraft configuration (main wing+ tailplane only) during pull-out manoeuvre, and the flight dynamics equations of motion were used to describe dynamics of an aircraft. Initial conditions for the flight dynamics equation of motion were settled up coming from the solution of the Euler flow model. As a test case, a weak pull-out manoeuvre was selected. During this manoeuvre, the highest value of angle of attack doesn't exceed 12 degrees - the value which can be obtained from the classical approach based on flight dynamics equations of motion with quasisteady aerodynamics. However, coupled Euler flight dynamic model has much wider applicability, and can be used for the analysis of manoeuvres at high angles of attack, including large scale separation at sharp edges, unsteadiness and flow asymmetries even for symmetrical undisturbed flowficld case. This method, if successfully verified to a number of important flight manoeuvres (such as spin, Cobra manoeuvre, roll at high angles of attack and other) can open a new, very promising field in the analysis of aircraft dynamics.
Go to article

Authors and Affiliations

Tomasz Iglewski
Zdobysław Goraj
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the assessment of safety of the pipelines elements from the heat and power generating plants of Ukraine made of l 2Kh I MF steel has been presented. The SINT AP procedures for failure assessment have been performed assuming two shapes of hypothetical cracks along the straight segments of pipeline. The thermal stresses during the cooling process have been taken into account in the analysis. The analysis has been performed at the first level of SINT AP procedures. Two stages: a) before pipeline operation and b) after 156000 hours of service work have been analyzed. The comparison of results obtained by other assessment method has been made.
Go to article

Authors and Affiliations

Ihor Dzioba

This page uses 'cookies'. Learn more